A046107 Triangle of prime numbers in which n-th row lists all primes p such that 1/p has decimal period n, n >= 1.
3, 11, 37, 101, 41, 271, 7, 13, 239, 4649, 73, 137, 333667, 9091, 21649, 513239, 9901, 53, 79, 265371653, 909091, 31, 2906161, 17, 5882353, 2071723, 5363222357, 19, 52579, 1111111111111111111, 3541, 27961, 43, 1933, 10838689, 23, 4093, 8779, 11111111111111111111111
Offset: 1
Examples
First rows of irregular triangle are: 3; 11; 37; 101; 41, 271; 7, 13; 239, 4649; 73, 137; 333667; 9091; 21649, 513239; 9901; 53, 79, 265371653; 909091; 31, 2906161; 17, 5882353; ...
References
- Ajima Naonobu (aka Ajima Chokuyen), Fujin Isshũ (Periods of Decimal Fractions).
Links
- Rows n=1..352, flattened
- David Eugene Smith and Yoshio Mikami, A History of Japanese Mathematics, Open Court, Chicago, 1914; chapter X.
- Eric Weisstein's World of Mathematics, Decimal Expansion.
- Index entries for sequences related to decimal expansion of 1/n
Programs
-
Mathematica
pp={}; Do[f=Transpose[FactorInteger[10^n-1]][[1]]; p=Complement[f, pp]; pp=Union[pp, p]; Print[p], {n, 66}] (* T. D. Noe, Sep 08 2005 *)
Extensions
First 276 rows in b-file from T. D. Noe, Jun 01 2010
Rows n=277..322 in b-file from Ray Chandler, May 01 2017
Rows n=323..352 in b-file from Max Alekseyev, Apr 26 2022
Comments