A046124 Last member of a sexy prime quadruple: value of p+18 such that p, p+6, p+12 and p+18 are all prime.
23, 29, 59, 79, 269, 619, 659, 1109, 1499, 1619, 1759, 1879, 2389, 2689, 3319, 3929, 4019, 5119, 5399, 5449, 5659, 6329, 6379, 9479, 11839, 12119, 12659, 13469, 14639, 14759, 15809, 15919, 17489, 18229, 19489, 20359, 21499, 23339, 24109
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Maxie D. Schmidt, New Congruences and Finite Difference Equations for Generalized Factorial Functions, arXiv:1701.04741 [math.CO], 2017.
- Eric Weisstein's World of Mathematics, Sexy Primes. [The definition in this webpage is unsatisfactory, because it defines a "sexy prime" as a pair of primes.- _N. J. A. Sloane_, Mar 07 2021].
Programs
-
Magma
[p+18: p in PrimesUpTo(30000) | IsPrime(p+6) and IsPrime(p+12) and IsPrime(p+18)]; // Vincenzo Librandi, Jan 07 2015
-
Mathematica
lst={};Do[p=Prime[n];If[PrimeQ[p+6]&&PrimeQ[p+12]&&PrimeQ[p+18], AppendTo[lst, p+18]], {n, 8!}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 29 2008 *)