cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046162 Reduced numerators of (n-1)^2/(n^2 + n + 1).

Original entry on oeis.org

0, 1, 4, 3, 16, 25, 12, 49, 64, 27, 100, 121, 48, 169, 196, 75, 256, 289, 108, 361, 400, 147, 484, 529, 192, 625, 676, 243, 784, 841, 300, 961, 1024, 363, 1156, 1225, 432, 1369, 1444, 507, 1600, 1681, 588, 1849, 1936, 675, 2116, 2209, 768, 2401, 2500
Offset: 1

Views

Author

Keywords

Comments

Arises in Routh's theorem.
With offset 0, multiplicative with a(3^e) = 3^(2e-1), a(p^e) = p^(2e) otherwise. - David W. Wilson, Jun 12 2005, corrected by Robert Israel, Apr 28 2017

Crossrefs

Cf. A046163 (denominators), A147560.

Programs

  • Magma
    [Numerator((n-1)^2/3): n in [1..70]]; // G. C. Greubel, Oct 27 2022
    
  • Maple
    seq(numer((n-1)^2/(n^2+n+1)), n=1..51) ; # Zerinvary Lajos, Jun 04 2008
    seq(denom(3/n^2-2), n=0..76) ; # Zerinvary Lajos, Jun 04 2008
  • Mathematica
    a[n_] := Numerator[(n - 1)^2/(n^2 + n + 1)]; Array[a, 50] (* Amiram Eldar, Aug 11 2022 *)
  • SageMath
    [numerator((n-1)^2/3) for n in range(1,71)] # G. C. Greubel, Oct 27 2022

Formula

G.f.: x^2*(1 + 4*x + 3*x^2 + 13*x^3 + 13*x^4 + 3*x^5 + 4*x^6 + x^7)/(1 - x^3)^3.
a(n) = (n-1)^2/3 if n-1 == 0 (mod 3), (n-1)^2 otherwise. - David W. Wilson, Jun 12 2005, corrected by Robert Israel, Apr 28 2017
From Amiram Eldar, Aug 11 2022: (Start)
a(n) = numerator((n-1)^2/3).
Sum_{n>=2} 1/a(n) = 11*Pi^2/54. (End)
From Amiram Eldar, Dec 30 2022: (Start)
With offset 0, Dirichlet g.f.: zeta(s-2)*(1-6/3^s).
Sum_{k=1..n} a(k) ~ 7*n^3/27. (End)