cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046194 Heptagonal triangular numbers.

Original entry on oeis.org

1, 55, 121771, 5720653, 12625478965, 593128762435, 1309034909945503, 61496776341083161, 135723357520344181225, 6376108764003055554511, 14072069153115290487843091, 661087708807868029661744485, 1459020273797576190840203197981, 68542895818241264287385936157403
Offset: 1

Views

Author

Keywords

Comments

From Ant King, Oct 18 2011: (Start)
lim(n->oo, u(2n+1)/u(2n)) = 1/2(2207+987*sqrt(5)),
lim(n->oo, u(2n)/u(2n-1)) = 1/2(47+21*sqrt(5)). (End)
From Raphie Frank, Nov 30 2012: (Start)
Where L_n is a Lucas number and F_n is Fibonacci number:
lim(n->oo, u(2n+1)/u(2n)) = 1/2(L_16+F_16*sqrt(5)),
lim(n->oo, u(2n)/u(2n-1)) = 1/2(L_8+F_8*sqrt(5)),
a(n) = L_1*a(n-1) + L_24*a(n-2) - L_24*a(n-3)- L_1*a(n-4) + L_1*a(n-5). (End)

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,103682,-103682,-1,1},{1,55,121771,5720653,12625478965},12] (* Ant King, Oct 18 2011 *)
  • PARI
    a(n)=((3-sqrt(5)*(-1)^n)*(2+sqrt(5))^(4*n-2)+(3+sqrt(5)*(-1)^n)*(2-sqrt(5))^(4*n-2)-14)\/80 \\ Charles R Greathouse IV, Oct 18 2011
    
  • PARI
    Vec(-x*(x^4+54*x^3+18034*x^2+54*x+1)/((x-1)*(x^2-322*x+1)*(x^2+322*x+1)) + O(x^20)) \\ Colin Barker, Jun 23 2015

Formula

The two bisections satisfy the same recurrence relation: a(n+2)=103682*a(n+1)-a(n)+18144 or a(n+1)=51841*a(n)+9072+2898*(320*a(n)^2+112*a(n)+9)^0.5. The g.f. satisfies f(z)=(z+55*z^2+18088*z^3+18088*z^4+55*z^5+z^6)/((1-z^2)*(1-103682*z^2+z^4))=1*z+55*z^2+121771*z^3+... - Richard Choulet, Sep 20 2007
From Ant King, Oct 18 2011: (Start)
a(n) = a(n-1)+103682a(n-2)-103682a(n-3)-a(n-4)+a(n-5).
a(n) = 1/80*((3-sqrt(5)*(-1)^n)*(2+sqrt(5))^(4n-2)+(3+sqrt(5)*(-1)^n)*(2-sqrt(5))^(4n-2)-14).
a(n) = floor(1/80*(3-sqrt(5)*(-1)^n)*(2+sqrt(5))^(4n-2)).
G.f.: x(1+54*x+18034*x^2+54*x^3+x^4)/((1-x)(1-322*x+x^2)(1+322*x+x^2)). (End)