A046376 Palindromes with exactly 2 palindromic prime factors (counted with multiplicity), and no other prime factors.
4, 6, 9, 22, 33, 55, 77, 121, 202, 262, 303, 393, 505, 626, 707, 939, 1111, 1441, 1661, 1991, 3443, 3883, 7997, 10201, 13231, 15251, 18281, 19291, 20602, 22622, 22822, 24842, 26662, 28682, 30903, 31613, 33933, 35653, 37673, 38683, 39993, 60206, 60406, 60806
Offset: 1
Examples
The palindrome 35653 is a term since it has 2 factors, 101 and 353, both palindromic.
Links
- Lars Blomberg, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Take[Select[Times@@@Tuples[Select[Prime[Range[5000]],PalindromeQ],2], PalindromeQ]// Union,50] (* Harvey P. Dale, Aug 25 2019 *)
-
PARI
{first(N=50, p=1) = vector(N, i, until( bigomega( p=nxt_A002113(p))==2 && vecmin( apply( is_A002113, factor(p)[,1])),); p)} \\ M. F. Hasler, Jan 04 2022
-
Python
from sympy import factorint from itertools import product def ispal(n): s = str(n); return s == s[::-1] def pals(d, base=10): # all d-digit palindromes digits = "".join(str(i) for i in range(base)) for p in product(digits, repeat=d//2): if d > 1 and p[0] == "0": continue left = "".join(p); right = left[::-1] for mid in [[""], digits][d%2]: yield int(left + mid + right) def ok(pal): f = factorint(pal) return sum(f.values()) == 2 and all(ispal(p) for p in f) print(list(filter(ok, (p for d in range(1, 6) for p in pals(d) if ok(p))))) # Michael S. Branicky, Aug 14 2022
Formula
Extensions
Definition clarified by Franklin T. Adams-Watters, Apr 11 2011
More terms from Lars Blomberg, Nov 06 2015
Comments