cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A084189 Minimum digit out of both prime factors of the numbers in A046376.

Original entry on oeis.org

2, 2, 3, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1
Offset: 0

Views

Author

Jason Earls, Jun 20 2003

Keywords

Comments

Conjecture: a(n) is never greater than 3.
Suggested by this old JRM problem: "Find a composite palindrome larger than 343 whose prime factors are palindromes consisting of digits greater than 3."

Examples

			a(9)=1 because the factors of A046376(9)= 262 are 2*131 and the minimum digit is 1.
		

A046368 Products of two palindromic primes.

Original entry on oeis.org

4, 6, 9, 10, 14, 15, 21, 22, 25, 33, 35, 49, 55, 77, 121, 202, 262, 302, 303, 362, 382, 393, 453, 505, 543, 573, 626, 655, 706, 707, 746, 755, 766, 905, 917, 939, 955, 1057, 1059, 1111, 1119, 1149, 1267, 1337, 1441, 1454, 1514, 1565, 1574, 1594, 1661, 1765, 1838, 1858
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

Intersection of A001358 and A033620; A046368 is a subsequence. - Reinhard Zumkeller, Apr 10 2011
Equivalently, semiprimes where both prime factors are palindromes. - Franklin T. Adams-Watters, Apr 11 2011
See A046376 for the subsequence of palindromic terms. - M. F. Hasler, Jan 04 2022

Crossrefs

Cf. A001358 (semiprimes), A002113 (palindromes), A002385 (palindromic primes), A046376 (subsequence of palindromes), A046400.

Programs

  • Mathematica
    palQ[n_] := Reverse[x = IntegerDigits[n]] == x; Select[Range[1800], PrimeOmega[#] == 2 && And @@ palQ /@ First /@ FactorInteger[#] &] (* Jayanta Basu, Jun 23 2013 *)
  • PARI
    select( {is_A046368(n)=bigomega(n)==2 && vecmin( apply( is_A002113, factor(n)[, 1]))}, [1..9999]) \\ M. F. Hasler, Jan 04 2022

Extensions

Definition clarified by Franklin T. Adams-Watters, Apr 11 2011
Definition simplified by M. F. Hasler, Jan 04 2022

A188650 Fixed points of A188649: numbers divisible by the reverse of all their divisors.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20, 22, 33, 40, 44, 55, 66, 77, 88, 99, 101, 110, 121, 131, 151, 181, 191, 202, 220, 242, 262, 303, 313, 353, 363, 373, 383, 393, 404, 440, 484, 505, 606, 626, 707, 727, 757, 787, 797, 808, 909, 919, 929, 939, 1010, 1111, 1331, 1441, 1661, 1991, 2020, 2222, 2662, 2882, 3333, 3443, 3883, 3993, 4040, 4444, 5555, 6666, 6886, 7777, 7997, 8888
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2011

Keywords

Comments

A188649(a(n)) = a(n);
A002385 and A046376 are subsequences; subsequence of A002113.

Programs

  • Haskell
    import Data.List (elemIndices)
    a188650 n = a188650_list !! (n-1)
    a188650_list =
       map succ $ elemIndices 0 $ zipWith (-) [1..] $ map a188649 [1..]
    
  • PARI
    rev(n:int,B=10)=my(m=n%B);n\=B;while(n>0,m=m*B+n%B;n\=B);m
    is(n)=fordiv(n,d,if(n%rev(d),return(0)));1 \\ Charles R Greathouse IV, Jul 14 2011
    
  • Python
    from math import lcm
    from sympy import divisors
    def ok(n): return n == lcm(*(int(str(d)[::-1]) for d in divisors(n)))
    print([k for k in range(1, 10000) if ok(k)]) # Michael S. Branicky, Sep 30 2022

A046408 Palindromes with exactly 2 distinct palindromic prime factors.

Original entry on oeis.org

6, 22, 33, 55, 77, 202, 262, 303, 393, 505, 626, 707, 939, 1111, 1441, 1661, 1991, 3443, 3883, 7997, 13231, 15251, 18281, 19291, 20602, 22622, 22822, 24842, 26662, 28682, 30903, 31613, 33933, 35653, 37673, 38683, 39993, 60206, 60406, 60806, 62026, 64646, 64846
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[65000],PalindromeQ[#]&&Total[Boole[PalindromeQ/@ FactorInteger[ #][[All,1]]]]==2&&PrimeOmega[#]==2&] (* Harvey P. Dale, Aug 07 2021 *)
  • PARI
    ispal(n) = my(d=digits(n)); d == Vecrev(d) \\ A002113
    for(k=1, 1e5, if(ispal(k)&&bigomega(k)==2,a=divisors(k); if(#a==4&&ispal(a[2])&&ispal(a[3]), print1(k,", ")))) \\ Alexandru Petrescu, Aug 14 2022
  • Python
    from sympy import factorint
    from itertools import product
    def ispal(n): s = str(n); return s == s[::-1]
    def pals(d, base=10): # all d-digit palindromes
        digits = "".join(str(i) for i in range(base))
        for p in product(digits, repeat=d//2):
            if d > 1 and p[0] == "0": continue
            left = "".join(p); right = left[::-1]
            for mid in [[""], digits][d%2]: yield int(left + mid + right)
    def ok(pal):
        f = factorint(pal)
        return len(f) == 2 and sum(f.values()) == 2 and all(ispal(p) for p in f)
    print(list(filter(ok, (p for d in range(1, 6) for p in pals(d) if ok(p))))) # Michael S. Branicky, Jun 22 2021
    

Extensions

a(41) and beyond from Michael S. Branicky, Jun 22 2021

A046385 Smallest palindrome with exactly n palindromic prime factors (counted with multiplicity), and no other prime factors.

Original entry on oeis.org

1, 2, 4, 8, 88, 252, 2772, 82728, 2112, 4224, 8448, 236989632, 48384, 2977792
Offset: 0

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

Initial terms of sequences A046376-A046384.
Note that 48384 (k=12) is a 'Droll' number: see A019507.
There are 3 more known terms: a(15)=405504, a(16)=40955904, a(20)=677707776. Any other terms would have at least 18 decimal digits. Conjecture: The sequence is finite and has no other terms than those shown here. - Hugo Pfoertner, Aug 13 2019

Examples

			a(7) = 82728 because it is the smallest palindrome with 7 palindromic and no other prime factors: 82728 = 2^3 * 3^3 * 383. If other prime factors are not excluded, A309565(7) = 29792 =  2^5 * 7^2 * 19 also has exactly 7 palindromic factors and the additional factor 19.
		

Crossrefs

Cf. A309565 (additional non-palindromic prime factors allowed).

Programs

  • PARI
    is_A002113(n)={Vecrev(n=digits(n))==n}; \\ M. F. Hasler in A002113
    arepalf(nf,x)={forstep(j=nf,1,-1,if(is_A002113(x[j,1]),,return(0)));return(1)};
    md=[0,1,2,3,4,5,6,7,8,9]; \\ Middle digits in odd length palindromes
    a=vector(64);a[1]=2;a[2]=4;a[3]=8;
    for(d=2,11,print("Digits: ",d);if(d%2==0,for(k=10^((d-2)/2),10*10^((d-2)/2)-1,my(dv=digits(k));P=fromdigits(concat(dv,Vecrev(dv)));x=factor(P);bigom=vecsum(x[,2]);nf=#x[,2];for(j=1,#a,if(a[j],,if(j==bigom,if(arepalf(nf,x),print("a(",j,")=",a[j]=P)))))),for(k=10^((d-3)/2),10*10^((d-3)/2)-1,my(dv=digits(k));for(m=1,10,P=fromdigits(concat(concat(dv,md[m]),Vecrev(dv)));x=factor(P);bigom=vecsum(x[,2]);nf=#x[,2];for(j=1,#a,if(a[j],,if(j==bigom,if(arepalf(nf,x),print("a(",j,")=",a[j]=P)))))))));a \\ Hugo Pfoertner, Aug 13 2019

Extensions

Definition clarified by Hugo Pfoertner, Aug 08 2019
Showing 1-5 of 5 results.