A046387 Products of exactly 5 distinct primes.
2310, 2730, 3570, 3990, 4290, 4830, 5610, 6006, 6090, 6270, 6510, 6630, 7410, 7590, 7770, 7854, 8610, 8778, 8970, 9030, 9282, 9570, 9690, 9870, 10010, 10230, 10374, 10626, 11130, 11310, 11730, 12090, 12210, 12390, 12558, 12810, 13090, 13110
Offset: 1
Examples
a(1) = 2310 = 2 * 3 * 5 * 7 * 11 = A002110(5) = 5#. a(2) = 2730 = 2 * 3 * 5 * 7 * 13. a(3) = 3570 = 2 * 3 * 5 * 7 * 17. a(10) = 6006 = 2 * 3 * 7 * 11 * 13.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
A046387 := proc(n) option remember; local a; if n = 1 then 2*3*5*7*11 ; else for a from procname(n-1)+1 do if A001221(a)= 5 and issqrfree(a) then return a; end if; end do: end if; end proc: # R. J. Mathar, Oct 13 2019
-
Mathematica
f5Q[n_]:=Last/@FactorInteger[n]=={1, 1, 1, 1, 1}; lst={};Do[If[f5Q[n], AppendTo[lst, n]], {n, 8!}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 26 2008 *)
-
PARI
is(n)=factor(n)[,2]==[1,1,1,1,1]~ \\ Charles R Greathouse IV, Sep 17 2015
-
PARI
is(n)= omega(n)==5 && bigomega(n)==5 \\ Hugo Pfoertner, Dec 18 2018
-
Python
from math import isqrt, prod from sympy import primerange, integer_nthroot, primepi def A046387(n): def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,5))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f) # Chai Wah Wu, Aug 30 2024
Extensions
Entry revised by N. J. A. Sloane, Apr 10 2006
Comments