A046388 Odd numbers of the form p*q where p and q are distinct primes.
15, 21, 33, 35, 39, 51, 55, 57, 65, 69, 77, 85, 87, 91, 93, 95, 111, 115, 119, 123, 129, 133, 141, 143, 145, 155, 159, 161, 177, 183, 185, 187, 201, 203, 205, 209, 213, 215, 217, 219, 221, 235, 237, 247, 249, 253, 259, 265, 267, 287, 291, 295, 299, 301, 303
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Crossrefs
Cf. A353481 (characteristic function).
Programs
-
Haskell
a046388 n = a046388_list !! (n-1) a046388_list = filter ((== 2) . a001221) a056911_list -- Reinhard Zumkeller, Jan 02 2014
-
Mathematica
max = 300; A046388 = Sort@Flatten@Table[Prime[m] Prime[n], {n, 3, Ceiling[PrimePi[max/3]]}, {m, 2, n - 1}]; Select[A046388, # < max &] (* Alonso del Arte based on Robert G. Wilson v's program for A006881, Oct 24 2011 *)
-
PARI
isok(n) = (n % 2) && (bigomega(n) == 2) && (omega(n)==2); \\ Michel Marcus, Feb 05 2015
-
Python
from sympy import factorint def ok(n): if n < 2 or n%2 == 0: return False f = factorint(n) return len(f) == 2 and sum(f.values()) == 2 print([k for k in range(304) if ok(k)]) # Michael S. Branicky, May 03 2022
-
Python
from math import isqrt from sympy import primepi, primerange def A046388(n): if n == 1: return 15 def f(x): return int(n-1+x+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(3, s+1))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024
Formula
Sum_{n>=1} 1/a(n)^s = (1/2)*(P(s)^2 - P(2*s)) + 1/4^s - P(s)/2^s, for s>1, where P is the prime zeta function. - Amiram Eldar, Nov 21 2020
Extensions
I removed some ambiguity in the definition and edited the entry, merging in some material from A146166. - N. J. A. Sloane, May 09 2013
Comments