A046391 Odd numbers with exactly 5 distinct prime factors.
15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 36465, 39585, 40755, 41055, 42315, 42735, 45885, 47355, 49335, 49665, 50505, 51051, 51765, 53295, 54285, 55335, 55965, 57057, 57855, 58695, 61215, 61845, 62205
Offset: 1
Keywords
Examples
50505 = 3 * 5 * 7 * 13 * 37.
Links
- Karl-Heinz Hofmann, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Programs
-
Maple
isA046391 := proc(n) type(n,'odd') and (A001221(n) = 5 ) ; end proc: for n from 1 do if isA046391(n) then print(n); end if; end do: # R. J. Mathar, Nov 10 2014
-
Mathematica
f[n_]:=Last/@FactorInteger[n]=={1,1,1,1,1}&&FactorInteger[n][[1,1]]>2; lst={};Do[If[f[n],AppendTo[lst,n]],{n,9!}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *)
-
Python
from sympy import primefactors, factorint print([n for n in range(1, 100000, 2) if len(primefactors(n)) == 5 and max(list(factorint(n).values())) < 2]) # Karl-Heinz Hofmann, Mar 01 2023