cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A112643 Odd squarefree abundant numbers.

Original entry on oeis.org

15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 50505, 51765, 54285, 55965, 58695, 61215, 64155, 68145, 70455, 72345, 77385, 80535, 82005, 83265, 84315, 91245
Offset: 1

Views

Author

Labos Elemer, Sep 20 2005

Keywords

Comments

Deviates from A046391 (does not contain 36465, 40755 for example).
The numbers of terms not exceeding 10^k, for k = 5, 6, ..., are 34, 134, 1663, 16328, 175630, 1694621, 16726454, ... . Apparently, the asymptotic density of this sequence exists and equals 0.00016... . - Amiram Eldar, Sep 02 2022
From Amiram Eldar, Jan 15 2025: (Start)
The least term that is not divisible by 5 is a(3696) = 22309287.
The least term that is not divisible by 3 is a(5607800) = 33426748355.
The least term that is coprime to 15 is 1357656019974967471687377449. (End)

Examples

			199815 = 3 * 5 * 7 * 11 * 173, with 32 divisors adding up to 400896 = 2 * 199815 + 1266.
		

Crossrefs

Programs

  • Maple
    # see A087248 for the additional code
    isA112643 := proc(n)
        isA087248(n) and type(n,'odd') ;
    end proc:
    for n from 1 do
        if isA112643(n) then
            print(n);
        end if;
    end do: # R. J. Mathar, Nov 10 2014
  • Mathematica
    ta = {{0}}; Do[g = n; s = DivisorSigma[1, n] - 2 * n; If[Greater[s, 0] && Equal[Abs[MoebiusMu[n]], 1] && !Equal[Mod[n, 2], 0], Print[n, PrimeFactorList[n], s]; ta = Append[ta, n]], {n, 1, 200000}];{ta = Delete[ta, 1], g}(* Elemer *)
    Select[Range[1, 99999, 2], MoebiusMu[#] != 0 && DivisorSigma[1, #] > 2 # &] (* Alonso del Arte, Nov 11 2017 *)
  • PARI
    is(n)=if(n%2==0, return(0)); my(f=factor(n)); sigma(f)>2*n && vecmax(f[,2])==1 \\ Charles R Greathouse IV, Feb 21 2017

Formula

A087248 INTERSECT A005408.
omega(a(n)) >= 5, where omega(n) = A001221(n) is the number of distinct primes dividing n. - Amiram Eldar, Jan 15 2025

A069158 a(n) = Product{d|n} mu(d), product over positive divisors, d, of n, where mu(d) = Moebius function (A008683).

Original entry on oeis.org

1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, 1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, 1, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 1, 0, 1, 1, -1, 0, -1, 1, 0, 0, 1, 1, -1, 0, 1, 1, -1, 0, -1, 1, 0, 0, 1, 1, -1, 0, 0, 1, -1, 0, 1, 1, 1, 0, -1, 0, 1, 0, 1, 1, 1, 0, -1, 0, 0, 0, -1, 1, -1, 0, 1, 1
Offset: 1

Views

Author

Leroy Quet, Apr 08 2002

Keywords

Comments

Absolute value of a(n) = absolute value of mu(n).
Differs from A080323 at n=2, 105, 165, 195, 231, ..., 15015,..., 19635,.. (cf. A046389, A046391, ...) - R. J. Mathar, Dec 15 2008
Not multiplicative: For example a(2)*a(15) <> a(30). - R. J. Mathar, Mar 31 2012
Row products of table A225817. - Reinhard Zumkeller, Jul 30 2013

Examples

			a(6) = mu(1)*mu(2)*mu(3)*mu(6) = 1*(-1)*(-1)*1 = 1.
		

Crossrefs

Programs

  • Haskell
    a069158 = product . a225817_row  -- Reinhard Zumkeller, Jul 30 2013
    
  • Magma
    f := function(n); t1 := &*[MoebiusMu(d) : d in Divisors(n) ]; return t1; end function;
    
  • Maple
    A069158 := proc(n)
        mul(numtheory[mobius](d),d=numtheory[divisors](n)) ;
    end proc: # R. J. Mathar, May 28 2016
  • Mathematica
    a[n_] := Product[MoebiusMu[d], {d, Divisors[n]}]; Array[a, 106] (* Jean-François Alcover, Feb 22 2018 *)
  • PARI
    a(n) = vecprod(apply(moebius, divisors(n))); \\ Amiram Eldar, Feb 10 2025

Formula

a(n) = 0 if mu(n) = 0 (A013929); a(n) = -1 if n = prime; a(n) = 1 if n = squarefree composite (A120944) or 1.
a(n) = A008966(n) - 2*A010051(n). - Amiram Eldar, Feb 10 2025

A168352 Products of 6 distinct odd primes.

Original entry on oeis.org

255255, 285285, 345345, 373065, 435435, 440895, 451605, 465465, 504735, 533715, 555555, 569415, 596505, 608685, 615615, 636405, 645645, 672945, 680295, 692835, 705705, 719355, 726495, 752115, 770385, 780045, 795795, 803985, 805035, 811965, 823515, 838695, 844305, 858585
Offset: 1

Views

Author

Keywords

Examples

			255255 = 3*5*7*11*13*17
285285 = 3*5*7*11*13*19
345345 = 3*5*7*11*13*23
435435 = 3*5*7*11*13*29
		

Crossrefs

Cf. A046391 (5 distinct odd primes).

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1,1,1,1,1}&&FactorInteger[n][[1,1]]>2; lst={};Do[If[f[n],AppendTo[lst,n]],{n,6*9!}];lst
  • PARI
    is(n) = {n%2 == 1 && factor(n)[,2]~ == [1,1,1,1,1,1]} \\ David A. Corneth, Aug 26 2020
    
  • Python
    from sympy import primefactors, factorint
    print([n for n in range(1, 1000000, 2) if len(primefactors(n)) == 6 and max(list(factorint(n).values())) == 1]) # Karl-Heinz Hofmann, Mar 01 2023
    
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A168352(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,1,2,1,6)))
        def bisection(f, kmin=0, kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

Formula

A067885 INTERSECT A005408. [R. J. Mathar, Nov 24 2009]

Extensions

Definition corrected by R. J. Mathar, Nov 24 2009
More terms from David A. Corneth, Aug 26 2020

A278569 Numbers of the form p^i*q^j*r^k where p,q,r are distinct odd primes and i,j,k >= 1.

Original entry on oeis.org

105, 165, 195, 231, 255, 273, 285, 315, 345, 357, 385, 399, 429, 435, 455, 465, 483, 495, 525, 555, 561, 585, 595, 609, 615, 627, 645, 651, 663, 665, 693, 705, 715, 735, 741, 759, 765, 777, 795, 805, 819, 825, 855, 861, 885, 897, 903, 915, 935, 945, 957, 969, 975, 987, 1001, 1005, 1015, 1023, 1035, 1045, 1065, 1071, 1085, 1095, 1105, 1113, 1131, 1173, 1185, 1197, 1209
Offset: 1

Views

Author

N. J. A. Sloane, Nov 27 2016

Keywords

Comments

More than the usual number of terms are included to show the difference from A216918 (the latter includes 3*5*7*11 = 1155 and all terms of A046390, A046391 etc).
If i,j,k are all equal to 1 we get A046389.

Crossrefs

Includes A046389, subsequence of A216918.

Programs

  • Mathematica
    Select[Range@ 1500, PrimeNu@ # == 3 && OddQ@ # &] (* Michael De Vlieger, Dec 05 2016 *)

Formula

A033992 INTERSECT A005408. - R. J. Mathar, Dec 05 2016

A112644 Odd and squarefree abundant numbers not divisible by 5.

Original entry on oeis.org

22309287, 28129101, 30069039, 34051017, 35888853, 36399363, 38057019, 39768729, 40681641, 41708667, 43444401, 45588543, 45894849, 48141093, 48555507, 50489439, 51294243, 51408357, 53804751, 54777723, 55186131, 56429373, 57228171, 58555497, 59168109
Offset: 1

Views

Author

Labos Elemer, Sep 20 2005

Keywords

Comments

The least term that is not divisible by 3 is 73#/5# = Product_{k=4..21} prime(k) = 1357656019974967471687377449. - Amiram Eldar, Aug 15 2024

Examples

			99906807 = 3*7*11*13*17*19*103 is a term since it is an odd squarefree number that is not divisible by 5, and sigma(99906807) = 201277440 > 2*99906807.
		

Crossrefs

Programs

  • Mathematica
    ta={{0}};Do[g=n;s=DivisorSigma[1, n]-2*n; If[Greater[s, 0]&&Equal[Abs[MoebiusMu[n]], 1]&& !Equal[Mod[n, 2], 0]&&!Equal[Mod[n, 5], 0], Print[n, PrimeFactorList[n], s];ta=Append[ta, n]], {n, 10000000, 100000000}];{ta=Delete[ta, 1], g}
  • PARI
    issfab(k) = my(f = factor(k)); issquarefree(f) && sigma(f, -1) > 2;
    is(k) = gcd(k, 10) == 1 && issfab(k); \\ Amiram Eldar, Aug 15 2024

A361075 Products of exactly 7 distinct odd primes.

Original entry on oeis.org

4849845, 5870865, 6561555, 7402395, 7912905, 8273265, 8580495, 8843835, 9444435, 10015005, 10140585, 10465455, 10555545, 10705695, 10818885, 10975965, 11565015, 11696685, 11996985, 12267255, 12777765, 12785955, 13096545, 13408395, 13498485, 13528515, 13667745, 13803405
Offset: 1

Views

Author

Karl-Heinz Hofmann, Mar 01 2023

Keywords

Examples

			a(1)     =   4849845 = 3*5*7*11*13*17*19
a(9663)  = 253808555 = 5*7*11*13*17*19*157
a(9961)  = 258573315 = 3*5*7*11*13*17*1013
a(10000) = 259173915 = 3*5*7*11*13*41*421
		

Crossrefs

Cf. A065091, A046388 (2 distinct odd primes).
Cf. A046389 (3 distinct odd primes), A046390 (4 distinct odd primes).
Cf. A046391 (5 distinct odd primes), A168352 (6 distinct odd primes).

Programs

  • Python
    import numpy
    from sympy import nextprime, sieve, primepi
    k_upto = 14 * 10**6
    array = numpy.zeros(k_upto,dtype="i4")
    sieve_max_number = primepi(nextprime(k_upto // 255255))
    for s in range(2,sieve_max_number):
        array[sieve[s]:k_upto][::sieve[s]] += 1
    for s in range(2,sieve_max_number):
        array[sieve[s]**2:k_upto][::sieve[s]**2] = 0
    print([k for k in range(1,k_upto,2) if array[k] == 7])
    
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A361075(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,1,2,1,7)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024
Showing 1-6 of 6 results.