A112643 Odd squarefree abundant numbers.
15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 50505, 51765, 54285, 55965, 58695, 61215, 64155, 68145, 70455, 72345, 77385, 80535, 82005, 83265, 84315, 91245
Offset: 1
Keywords
Examples
199815 = 3 * 5 * 7 * 11 * 173, with 32 divisors adding up to 400896 = 2 * 199815 + 1266.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..10000
Programs
-
Maple
# see A087248 for the additional code isA112643 := proc(n) isA087248(n) and type(n,'odd') ; end proc: for n from 1 do if isA112643(n) then print(n); end if; end do: # R. J. Mathar, Nov 10 2014
-
Mathematica
ta = {{0}}; Do[g = n; s = DivisorSigma[1, n] - 2 * n; If[Greater[s, 0] && Equal[Abs[MoebiusMu[n]], 1] && !Equal[Mod[n, 2], 0], Print[n, PrimeFactorList[n], s]; ta = Append[ta, n]], {n, 1, 200000}];{ta = Delete[ta, 1], g}(* Elemer *) Select[Range[1, 99999, 2], MoebiusMu[#] != 0 && DivisorSigma[1, #] > 2 # &] (* Alonso del Arte, Nov 11 2017 *)
-
PARI
is(n)=if(n%2==0, return(0)); my(f=factor(n)); sigma(f)>2*n && vecmax(f[,2])==1 \\ Charles R Greathouse IV, Feb 21 2017
Formula
omega(a(n)) >= 5, where omega(n) = A001221(n) is the number of distinct primes dividing n. - Amiram Eldar, Jan 15 2025
Comments