cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A046399 Smallest squarefree palindrome with exactly n distinct prime factors.

Original entry on oeis.org

1, 2, 6, 66, 858, 6006, 222222, 22444422, 244868442, 6434774346, 438024420834, 50146955964105, 2415957997595142, 495677121121776594, 22181673755737618122, 5521159517777159511255, 477552751050050157255774
Offset: 0

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

Initial terms of sequences A046392-A046398.

Examples

			a(4) = 858 = 2*3*11*13.
		

References

  • J.-P. Delahaye, Merveilleux nombres premiers ("Amazing primes"), p. 315, Pour la Science, Paris 2000.

Crossrefs

Programs

  • Mathematica
    r[n_] := FromDigits[Reverse[IntegerDigits[n]]]; Do[k = 1; While[r[k] != k || !SquareFreeQ[k] || Length[Select[Divisors[k], PrimeQ]] != n, k++ ]; Print[k], {n, 0, 30}] (* Ryan Propper, Sep 16 2005 *)

Extensions

Edited by N. J. A. Sloane, Dec 06 2008 at the suggestion of R. J. Mathar
a(10)-a(13) from Donovan Johnson, Oct 03 2011
a(14)-a(15) from David A. Corneth, Oct 03 2020
a(15) corrected by Daniel Suteu, Feb 05 2023
a(16) from Michael S. Branicky, Feb 08 2023

A356767 Tetraprimes (products of four distinct primes) whose reversals are different tetraprimes.

Original entry on oeis.org

1518, 2046, 2226, 2262, 2418, 2478, 2618, 2622, 2814, 2838, 2886, 3135, 3927, 4170, 4182, 4386, 4389, 4746, 4785, 4935, 5313, 5394, 5406, 5478, 5565, 5655, 5838, 5874, 6018, 6045, 6222, 6402, 6438, 6474, 6486, 6690, 6699, 6834, 6846, 6882, 7293, 7458, 8106, 8142
Offset: 1

Views

Author

Tanya Khovanova, Aug 26 2022

Keywords

Comments

Palindromic tetraprimes are A046394.
The corresponding sequence for three distinct primes is A270175.

Examples

			1518 = 2*3*11*23 is a tetraprime. Its reversal 8151 = 3*11*13*19 is another tetraprime. Thus, 1518 is in this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10000],Transpose[ FactorInteger[FromDigits[Reverse[IntegerDigits[#]]]]][[2]] == {1, 1, 1, 1} && IntegerDigits[#] != Reverse[IntegerDigits[#]] && Transpose[FactorInteger[#]][[2]] == {1, 1, 1, 1} &]
  • Python
    from sympy import factorint
    def tetra(n): return list(factorint(n).values()) == [1, 1, 1, 1]
    def ok(n):
        if not tetra(n): return False
        revn = int(str(n)[::-1])
        return n != revn and tetra(revn)
    print([k for k in range(9000) if ok(k)]) # Michael S. Branicky, Aug 27 2022
Showing 1-2 of 2 results.