cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A046391 Odd numbers with exactly 5 distinct prime factors.

Original entry on oeis.org

15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 36465, 39585, 40755, 41055, 42315, 42735, 45885, 47355, 49335, 49665, 50505, 51051, 51765, 53295, 54285, 55335, 55965, 57057, 57855, 58695, 61215, 61845, 62205
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			50505 = 3 * 5 * 7 * 13 * 37.
		

Crossrefs

Intersection of A051270 and A005408.

Programs

  • Maple
    isA046391 := proc(n)
        type(n,'odd') and (A001221(n) = 5 ) ;
    end proc:
    for n from 1 do
        if isA046391(n) then
            print(n);
        end if;
    end do: # R. J. Mathar, Nov 10 2014
  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1,1,1,1}&&FactorInteger[n][[1,1]]>2; lst={};Do[If[f[n],AppendTo[lst,n]],{n,9!}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *)
  • Python
    from sympy import primefactors, factorint
    print([n for n in range(1, 100000, 2) if len(primefactors(n)) == 5 and max(list(factorint(n).values())) < 2]) # Karl-Heinz Hofmann, Mar 01 2023

A046375 Odd numbers with exactly 5 palindromic prime factors (counted with multiplicity).

Original entry on oeis.org

243, 405, 567, 675, 891, 945, 1125, 1323, 1485, 1575, 1875, 2079, 2205, 2475, 2625, 3087, 3125, 3267, 3465, 3675, 4125, 4375, 4851, 5145, 5445, 5775, 6125, 6875, 7203, 7623, 8085, 8181, 8575, 9075, 9625, 10611, 11319, 11979, 12005, 12231, 12705
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Programs

  • Maple
    rev:= proc(n) local L,d,i;
      L:= convert(n,base,10);
      d:= nops(L);
      add(L[i]*10^(d-i),i=1..d);
    end proc:
    PP:= NULL:
    for d from 1 to 3 do
      for x from 10^(d-1) to 10^d-1 do
        y:= x*10^(d-1) + rev(floor(x/10));
        if isprime(y) then PP:= PP,y fi;
      od;
      if d = 1 then PP:= PP,11 fi;
    od:
    PP:= [PP][2..-1]:
    npp:= nops(PP):
    N:= PP[-1]*3^4:
    Res:= NULL:
    for i1 from 1 to npp do
         v1:= PP[i1];
         for i2 from 1 to i1 do
           v2:= v1*PP[i2];
           if v2*3^3 > N then break fi;
           for i3 from 1 to i2 do
             v3:= v2*PP[i3];
             if v3 * 3^2 > N then break fi;
             for i4 from 1 to i3 do
               v4:= v3*PP[i4];
               if v4* 3 > N then break fi;
               for i5 from 1 to i4 do
                 v:= v4*PP[i5];
                 if v > N then break fi;
                 Res:= Res, v
    od od od od od:
    sort([Res]); # Robert Israel, Mar 15 2024

Extensions

Offset corrected by Robert Israel, Mar 15 2024
Showing 1-2 of 2 results.