cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A046330 Palindromes with exactly 4 prime factors (counted with multiplicity).

Original entry on oeis.org

88, 232, 414, 424, 444, 484, 525, 585, 636, 666, 676, 686, 808, 858, 868, 999, 1881, 2002, 2332, 2442, 2662, 3003, 3663, 3773, 3993, 4114, 4444, 4774, 5005, 5115, 5225, 6116, 6556, 6666, 7007, 7227, 8668, 9999, 10101, 10701, 11011, 12321, 13431
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[14000],PalindromeQ[#]&&PrimeOmega[#]==4&] (* Harvey P. Dale, Jul 07 2024 *)

A046394 Palindromes with exactly 4 distinct prime factors.

Original entry on oeis.org

858, 2002, 2442, 3003, 4774, 5005, 5115, 6666, 10101, 15351, 17871, 22422, 22722, 24242, 26562, 26962, 28482, 35853, 36363, 41314, 43734, 43834, 45654, 47874, 49494, 49794, 49894, 51015, 51315, 51415, 53535, 53835, 53935, 56865, 58485
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F;
      F:= ifactors(n)[2];
      nops(F)=4 and max(map(t->t[2],F))=1
    end proc:
    makepali:= proc(n,d) local L;
      L:= convert(n,base,10);
      if d::even then 10^(d/2)*n + add(L[i]*10^(d/2-i),i=1..d/2)
      else 10^((d-1)/2)*n + add(L[i]*10^((d+1)/2-i),i=2..(d+1)/2)
      fi
    end proc:
    select(filter, [seq(seq(makepali(x,d),
       x=10^ceil(d/2-1)..10^ceil(d/2)-1),d=1..6)]); # Robert Israel, Jun 05 2018
  • Mathematica
    Select[Range[60000],PalindromeQ[#]&&PrimeNu[#]==Total[FactorInteger[#][[All,2]]] == 4&] (* Harvey P. Dale, Apr 07 2022 *)

A046378 Palindromes with exactly 4 palindromic prime factors (counted with multiplicity).

Original entry on oeis.org

88, 484, 525, 686, 808, 2662, 3773, 3993, 4444, 6666, 9999, 14641, 24442, 34643, 36663, 40804, 52525, 134431, 224422, 336633, 1234321, 1596951, 2060602, 3090903, 11333311, 14699641, 22888822, 66888866, 104060401, 125888521, 134969431, 367888763, 413979314
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			The palindrome 1596951 is a term since it has 4 factors 3^2 191 929, all palindromic.
		

Crossrefs

Extensions

More terms from Lars Blomberg, Nov 06 2015
Showing 1-3 of 3 results.