cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A046394 Palindromes with exactly 4 distinct prime factors.

Original entry on oeis.org

858, 2002, 2442, 3003, 4774, 5005, 5115, 6666, 10101, 15351, 17871, 22422, 22722, 24242, 26562, 26962, 28482, 35853, 36363, 41314, 43734, 43834, 45654, 47874, 49494, 49794, 49894, 51015, 51315, 51415, 53535, 53835, 53935, 56865, 58485
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F;
      F:= ifactors(n)[2];
      nops(F)=4 and max(map(t->t[2],F))=1
    end proc:
    makepali:= proc(n,d) local L;
      L:= convert(n,base,10);
      if d::even then 10^(d/2)*n + add(L[i]*10^(d/2-i),i=1..d/2)
      else 10^((d-1)/2)*n + add(L[i]*10^((d+1)/2-i),i=2..(d+1)/2)
      fi
    end proc:
    select(filter, [seq(seq(makepali(x,d),
       x=10^ceil(d/2-1)..10^ceil(d/2)-1),d=1..6)]); # Robert Israel, Jun 05 2018
  • Mathematica
    Select[Range[60000],PalindromeQ[#]&&PrimeNu[#]==Total[FactorInteger[#][[All,2]]] == 4&] (* Harvey P. Dale, Apr 07 2022 *)

A046410 Palindromes with exactly 4 distinct palindromic prime factors.

Original entry on oeis.org

6666, 22888822, 66888866, 413979314, 2228668222, 2668668662, 2888668882, 3315115133, 6668228666, 200446644002, 222266662222, 222446644222, 224488884422, 228866668822, 244666666442, 246664466642, 246686686642
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Extensions

a(10)-a(17) from Donovan Johnson, Jul 20 2010

A046378 Palindromes with exactly 4 palindromic prime factors (counted with multiplicity).

Original entry on oeis.org

88, 484, 525, 686, 808, 2662, 3773, 3993, 4444, 6666, 9999, 14641, 24442, 34643, 36663, 40804, 52525, 134431, 224422, 336633, 1234321, 1596951, 2060602, 3090903, 11333311, 14699641, 22888822, 66888866, 104060401, 125888521, 134969431, 367888763, 413979314
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			The palindrome 1596951 is a term since it has 4 factors 3^2 191 929, all palindromic.
		

Crossrefs

Extensions

More terms from Lars Blomberg, Nov 06 2015

A348050 Palindromes setting a new record of their number of prime divisors A001222.

Original entry on oeis.org

1, 2, 4, 8, 88, 252, 2112, 4224, 8448, 44544, 48384, 405504, 4091904, 405909504, 677707776, 4285005824, 21128282112, 29142024192, 4815463645184, 445488555884544, 27874867776847872, 40539458585493504, 63556806860865536, 840261068860162048, 4870324782874230784
Offset: 1

Views

Author

Hugo Pfoertner, Oct 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    m=0;lst=Union@Flatten[Table[{FromDigits@Join[s=IntegerDigits@n,Reverse@s],FromDigits@Join[w=IntegerDigits@n,Rest@Reverse@w]},{n,10^5}]];Do[t=PrimeOmega@lst[[n]];If[t>m,Print@lst[[n]];m=t],{n,Length@lst}] (* Giorgos Kalogeropoulos, Oct 25 2021 *)
  • Python
    from sympy import factorint
    from itertools import product
    def palsthru(maxdigits):
        midrange = [[""], [str(i) for i in range(10)]]
        for digits in range(1, maxdigits+1):
            for p in product("0123456789", repeat=digits//2):
                left = "".join(p)
                if len(left) and left[0] == '0': continue
                for middle in midrange[digits%2]:
                    yield int(left+middle+left[::-1])
    def afind(maxdigits):
        record = -1
        for p in palsthru(maxdigits):
            f = factorint(p, multiple=True)
            if p > 0 and len(f) > record:
                record = len(f)
                print(p, end=", ")
    afind(10) # Michael S. Branicky, Oct 25 2021

Extensions

a(1) = 1 from David A. Corneth, Oct 25 2021
a(16)-a(19) from Giorgos Kalogeropoulos, Oct 25 2021
a(20) from Michael S. Branicky, Oct 25 2021
a(21)-a(25) from Chai Wah Wu, Oct 28 2021
Showing 1-4 of 4 results.