A046394 Palindromes with exactly 4 distinct prime factors.
858, 2002, 2442, 3003, 4774, 5005, 5115, 6666, 10101, 15351, 17871, 22422, 22722, 24242, 26562, 26962, 28482, 35853, 36363, 41314, 43734, 43834, 45654, 47874, 49494, 49794, 49894, 51015, 51315, 51415, 53535, 53835, 53935, 56865, 58485
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local F; F:= ifactors(n)[2]; nops(F)=4 and max(map(t->t[2],F))=1 end proc: makepali:= proc(n,d) local L; L:= convert(n,base,10); if d::even then 10^(d/2)*n + add(L[i]*10^(d/2-i),i=1..d/2) else 10^((d-1)/2)*n + add(L[i]*10^((d+1)/2-i),i=2..(d+1)/2) fi end proc: select(filter, [seq(seq(makepali(x,d), x=10^ceil(d/2-1)..10^ceil(d/2)-1),d=1..6)]); # Robert Israel, Jun 05 2018
-
Mathematica
Select[Range[60000],PalindromeQ[#]&&PrimeNu[#]==Total[FactorInteger[#][[All,2]]] == 4&] (* Harvey P. Dale, Apr 07 2022 *)