cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046411 Composite numbers the concatenation of whose prime factors is a prime.

Original entry on oeis.org

6, 12, 18, 21, 22, 28, 33, 39, 46, 51, 52, 54, 58, 63, 66, 70, 82, 84, 93, 98, 111, 115, 117, 133, 141, 142, 148, 154, 159, 162, 165, 166, 171, 172, 175, 177, 182, 187, 198, 201, 205, 207, 210, 219, 220, 226, 232, 235, 237, 245, 246, 247, 249, 253, 255, 261
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

For the corresponding primes, see A038514. - Lekraj Beedassy, Jun 05 2009

Examples

			162 = 2 * 3 * 3 * 3 * 3 and 23333 is a prime, so 162 is in the sequence.
		

Crossrefs

Cf. A038514 (corresponding primes), A221220 (factors without multiplicity).

Programs

  • Mathematica
    co[n_,k_]:=Nest[FromDigits[Flatten[IntegerDigits[{#,n}]]]&,n,k-1]; Select[Range[261],!PrimeQ[#]&&PrimeQ[FromDigits[Flatten[IntegerDigits[co@@@FactorInteger[#]]]]]&](* Jayanta Basu, Jun 04 2013 *)
  • PARI
    is(n)=my(f=factor(n),s="");for(i=1,#f~,for(j=1,f[i,2],s=Str(s,f[i,1]))); isprime(eval(s)) && !isprime(n) \\ Charles R Greathouse IV, May 14 2015
    
  • Python
    from sympy import isprime, factorint
    def ok(n):
        f = factorint(n)
        if sum(e for e in f.values()) < 2: return False
        return isprime(int("".join(str(p)*e for p, e in f.items())))
    print(list(filter(ok, range(2, 262)))) # Michael S. Branicky, Jun 12 2021

Extensions

Edited by Charles R Greathouse IV, Apr 23 2010
Title clarified by Sean A. Irvine, Jan 16 2021