cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A038514 Primes corresponding to A046411.

Original entry on oeis.org

23, 223, 233, 37, 211, 227, 311, 313, 223, 317, 2213, 2333, 229, 337, 2311, 257, 241, 2237, 331, 277, 337, 523, 3313, 719, 347, 271, 2237, 2711, 353, 23333, 3511, 283, 3319, 2243, 557, 359, 2713, 1117, 23311, 367, 541, 3323, 2357, 373, 22511
Offset: 0

Views

Author

Keywords

Crossrefs

A343027 Numbers whose concatenation of prime factors in increasing order is a prime number.

Original entry on oeis.org

2, 3, 5, 6, 7, 11, 12, 13, 17, 18, 19, 21, 22, 23, 28, 29, 31, 33, 37, 39, 41, 43, 46, 47, 51, 52, 53, 54, 58, 59, 61, 63, 66, 67, 70, 71, 73, 79, 82, 83, 84, 89, 93, 97, 98, 101, 103, 107, 109, 111, 113, 115, 117, 127, 131, 133, 137, 139, 141, 142, 148, 149
Offset: 1

Views

Author

Wim JA Bruyninckx, Apr 02 2021

Keywords

Examples

			c(1) = 1    not prime -> 1 is not a term.
c(2) = 2    prime     -> 2 is a term.
c(3) = 3    prime     -> 3 is a term.
c(4) = 22   not prime -> 4 is not a term.
c(5) = 5    prime     -> 5 is a term.
c(6) = 23   prime     -> 6 is a term.
		

Crossrefs

Cf. A037276 (concatenate prime factors), A046411.
Cf. A068998.

Programs

  • Maple
    q:= n-> isprime(parse(cat(sort(map(i-> i[1]$i[2], ifactors(n)[2]))[]))):
    select(q, [$2..222])[];  # Alois P. Heinz, Mar 27 2024
  • Mathematica
    m[{p_, e_}] := Table[p, {e}]; c[w_] := FromDigits[Join @@ IntegerDigits@ w]; Select[ Range@ 150, PrimeQ@ c@ Flatten[m /@ FactorInteger[#]] &] (* Giovanni Resta, Apr 23 2021 *)
  • Python
    from sympy import *
    def b(n):
        f=factorint(n)
        l=sorted(f)
        return 1 if n==1 else int("".join(str(i)*f[i] for i in l))
    # print([b(n) for n in range(1, 101)])
    for n in range(1,200):
        if isprime(b(n)):
            print (n)

A046424 Numbers requiring 4 steps to reach a prime under the prime factor concatenation procedure.

Original entry on oeis.org

10, 15, 16, 26, 27, 95, 118, 119, 121, 132, 145, 202, 204, 217, 286, 295, 302, 308, 354, 361, 370, 377, 400, 437, 451, 453, 455, 471, 474, 483, 506, 518, 526, 528, 530, 545, 567, 600, 610, 616, 635, 649, 650, 654, 655, 672, 699, 700, 718, 720, 722, 735, 745
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			95 = 5*19 -> 519 = 3*173 -> 3173 = 19*167 -> 19167 = 3*6389 and 36389 is prime.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local k,F,x,j;
      x:= n;
      for k from 1 to 4 do
        if isprime(x) then return false fi;
        F:= sort(ifactors(x)[2],(a,b) -> a[1] t[1] $ t[2], F);
        x:= F[1];
        for j from 2 to nops(F) do
          x:= x*10^(1+ilog10(F[j]))+F[j]
        od;
      od;
      isprime(x)
    end proc:
    select(filter, [$2..1000]);# Robert Israel, Jun 25 2019

Extensions

Edited by Charles R Greathouse IV, Apr 28 2010

A046428 Numbers requiring 8 steps to reach a prime under the prime factor concatenation procedure.

Original entry on oeis.org

78, 170, 315, 316, 544, 553, 579, 594, 626, 675, 726, 909, 940, 1056, 1088, 1090, 1107, 1118, 1178, 1210, 1260, 1349, 1382, 1482, 1580, 1585, 1616, 1617, 1620, 1645, 1647, 1746, 1824, 1872, 2033, 2145, 2188, 2195, 2201, 2211, 2225, 2250, 2338, 2349, 2365, 2378
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Programs

  • PARI
    \\ See Links section.

Extensions

More terms from Rémy Sigrist, May 19 2019

A046429 Numbers requiring 9 steps to reach a prime under the prime factor concatenation procedure.

Original entry on oeis.org

40, 44, 81, 224, 265, 395, 422, 462, 640, 698, 818, 972, 1010, 1032, 1070, 1089, 1174, 1206, 1280, 1336, 1446, 1518, 1520, 1528, 1581, 1662, 1728, 1814, 1816, 1849, 1852, 1853, 1856, 1892, 1927, 1932, 1960, 2032, 2060, 2061, 2090, 2098, 2202, 2212, 2249
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			698 is in the sequence as 698 -> 2349 -> 333329 -> 2571297 -> 3857099 -> 31312323 -> 33771937101 -> 379437170413 -> 73124171910091 -> 374148203145623. Only after the ninth iteration we reach a prime. - _David A. Corneth_, Oct 15 2019
		

Crossrefs

Programs

  • PARI
    is(n, k) = if(isprime(n), return(0)); for(i = 1, k - 1, n = concatelements(primesvector(n)); if(isprime(n), return(0))); n = concatelements(primesvector(n)); isprime(n)
    concatelements(v) = my(s = ""); for(i = 1, #v, s = concat(s, v[i])); eval(s)
    primesvector(n) = my(f = factor(n), res = vector(vecsum(f[,2])), t = 0); for(i = 1, #f~, for(j = 1, f[i, 2], t++; res[t] = f[i, 1])); res \\ David A. Corneth, Oct 15 2019

Extensions

Extended and edited by Charles R Greathouse IV, Apr 28 2010

A221220 Numbers with more than one prime factor such that concatenation of its prime factors (without multiplicity) is a prime.

Original entry on oeis.org

6, 12, 18, 21, 22, 24, 33, 36, 39, 44, 46, 48, 51, 54, 58, 63, 66, 70, 72, 82, 88, 92, 93, 96, 99, 108, 111, 115, 116, 117, 132, 133, 140, 141, 142, 144, 147, 153, 154, 159, 162, 164, 165, 166, 176, 177, 182, 184, 187, 189, 192, 198, 201, 205, 210, 216, 219
Offset: 1

Views

Author

Jayanta Basu, Jun 04 2013

Keywords

Examples

			Prime factors of 140 are 2, 5, and 7 and 257 is prime, so 140 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[220],Length[x=First/@FactorInteger[#]]>1&&PrimeQ[FromDigits[Flatten[IntegerDigits[x]]]]&]
  • Python
    from sympy import isprime, primefactors
    def ok(n):
        pf = primefactors(n)
        if len(pf) < 2: return False
        return isprime(int("".join(str(p) for p in pf)))
    print(list(filter(ok, range(2, 220)))) # Michael S. Branicky, Jun 12 2021

A046422 Numbers requiring 2 steps to reach a prime under the prime factor concatenation procedure.

Original entry on oeis.org

4, 9, 24, 30, 32, 36, 38, 42, 50, 55, 57, 60, 68, 74, 75, 88, 92, 94, 99, 102, 106, 108, 110, 122, 134, 140, 155, 158, 174, 194, 206, 209, 215, 231, 244, 254, 272, 280, 287, 298, 299, 306, 314, 323, 332, 334, 346, 351, 362, 365, 371, 374, 398, 413, 415, 417
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			24 = 2*2*2*3, 2223 = 3*3*13*19, 331319 is prime.
		

Crossrefs

Extensions

Edited by Charles R Greathouse IV, Apr 28 2010

A046423 Numbers requiring 3 steps to reach a prime under the prime factor concatenation procedure.

Original entry on oeis.org

25, 35, 56, 62, 69, 72, 76, 85, 90, 100, 114, 125, 138, 143, 152, 189, 213, 221, 238, 250, 259, 260, 270, 275, 278, 303, 318, 333, 364, 366, 369, 390, 403, 441, 448, 454, 469, 470, 473, 485, 507, 512, 519, 522, 529, 559, 560, 572, 588, 591, 624, 629, 648
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			69 = 3*23 -> 323 = 17*19 -> 1719 = 3*3*191 and 33191 is prime.
		

Crossrefs

Extensions

Edited by Charles R Greathouse IV, Apr 28 2010

A046425 Numbers requiring 5 steps to reach a prime under the prime factor concatenation procedure.

Original entry on oeis.org

14, 34, 147, 164, 183, 214, 216, 230, 236, 248, 252, 276, 285, 309, 324, 335, 404, 405, 444, 482, 484, 486, 508, 520, 527, 540, 550, 570, 580, 633, 636, 638, 658, 689, 704, 730, 738, 802, 814, 852, 915, 935, 954, 959, 960, 981, 996, 1004, 1037, 1046, 1058
Offset: 0

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			14 = 2*7 -> 27 = 3*3*3 -> 333 = 3*3*37 -> 3337 = 47*71 -> 4771 = 13*367 and 13367 is prime.
		

Crossrefs

A046426 Numbers requiring 6 steps to reach a prime under the prime factor concatenation procedure.

Original entry on oeis.org

45, 64, 153, 156, 169, 186, 190, 195, 258, 304, 325, 381, 396, 464, 493, 561, 575, 602, 646, 652, 662, 713, 725, 825, 843, 879, 880, 899, 944, 948, 951, 957, 988, 989, 1007, 1048, 1106, 1121, 1166, 1239, 1252, 1265, 1267, 1293, 1390, 1422, 1474, 1480, 1486
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Extensions

Edited by Charles R Greathouse IV, Apr 28 2010
Showing 1-10 of 11 results. Next