cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046485 Sum of first n palindromic primes A002385.

Original entry on oeis.org

2, 5, 10, 17, 28, 129, 260, 411, 592, 783, 1096, 1449, 1822, 2205, 2932, 3689, 4476, 5273, 6192, 7121, 17422, 27923, 38524, 49835, 61246, 73667, 86388, 99209, 112540, 126371, 140302, 154643, 169384, 184835, 200386, 216447, 232808, 249369, 266030, 283501
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Comments

The subsequence of prime partial sum of palindromic primes begins: 2, 5, 17, 5273, 7121, 154643, 283501. What is the smallest nontrivial (i.e., multidigit) palindromic prime partial sum of palindromic primes? [Jonathan Vos Post, Feb 07 2010]

Crossrefs

Programs

  • Mathematica
    t = {}; b = 10; Do[p = Prime[n]; i = IntegerDigits[p, b]; If[i == Reverse[i], AppendTo[t, p];(*Print[p.FromDigits[i]]*)], {n, 4000}]; Accumulate[t] (* Vladimir Joseph Stephan Orlovsky, Feb 23 2012 *)
    Accumulate[Select[Prime[Range[10000]],IntegerDigits[#]==Reverse[ IntegerDigits[#]]&]] (* Harvey P. Dale, Aug 10 2013 *)

Formula

a(n) = Sum_{i=1..n} A002385(i) = Sum_{i=1..n} {p prime and R(p) = p, i.e., primes whose decimal expansion is a palindrome}. [Jonathan Vos Post, Feb 07 2010]

Extensions

Offset set to 1 by R. J. Mathar, Feb 21 2010