cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A046516 Numbers with multiplicative persistence value 7.

Original entry on oeis.org

68889, 68898, 68988, 69888, 86889, 86898, 86988, 88689, 88698, 88869, 88896, 88968, 88986, 89688, 89868, 89886, 96888, 98688, 98868, 98886, 168889, 168898, 168988, 169888, 186889, 186898, 186988, 188689, 188698, 188869, 188896, 188968
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Comments

From Daniel Mondot, Mar 26 2022: (Start)
The product of the digits of each term is 27648, 47628, 64827, 84672, 134217728, 914838624, 1792336896, 3699376128, 48814981614, 134481277728, 147483721728 or 1438916737499136 (sequence A350185).
The first 62 terms produce 27648.
The first term that produces 47628 is a(63).
The first term that produces 64827 is a(233).
The first term that produces 84672 is a(235).
The first term that produces 134217728 is a(1753110).
The first term that produces 914838624 is a(17835449).
The first term that produces 1792336896 is a(18235677).
The first term that produces 3699376128 is a(23853261).
The first term that produces 48814981614 is a(66441891).
The first term that produces 134481277728 is a(452601087).
The first term that produces 147483721728 is a(425636434).
The first term that produces 1438916737499136 is somewhere after a(500*10^6). (End)

Examples

			68889 -> [ 27648 ][ 2688 ][ 768 ][ 336 ][ 54 ][ 20 ][ 0 ] -> one digit in seven steps.
		

Crossrefs

Programs

  • Maple
    mp:= proc(n) option remember;
        if n <= 9 then return 0 fi;
        1+procname(convert(convert(n,base,10),`*`))
    end proc:
    select(mp=7, [$1..200000]); # Robert Israel, Feb 12 2019

A199997 Composite numbers whose multiplicative persistence is 7.

Original entry on oeis.org

68889, 68898, 68988, 69888, 86889, 86898, 86988, 88689, 88698, 88869, 88896, 88968, 88986, 89688, 89868, 89886, 96888, 98688, 98868, 98886, 168889, 168898, 168988, 169888, 186898, 186988, 188689, 188698, 188896, 188968, 188986, 189688, 189868, 189886, 196888
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2011

Keywords

Comments

Complement of A046507 with respect to A046516.

Examples

			68889 -> [ 27648 ][ 2688 ][ 768 ][ 336 ][ 54 ][ 20 ][ 0 ] -> one digit in seven steps.
		

Crossrefs

Cf. A046507 (primes whose multiplicative persistence is 7).

Programs

  • Mathematica
    persistence[n_] := Module[{cnt = 0, k = n}, While[k > 9, cnt++; k = Times @@ IntegerDigits[k]]; cnt]; Select[Range[300000], ! PrimeQ[#] && persistence[#] == 7 &] (* T. D. Noe, Nov 23 2011 *)
Showing 1-2 of 2 results.