A046528 Numbers that are a product of distinct Mersenne primes (elements of A000668).
1, 3, 7, 21, 31, 93, 127, 217, 381, 651, 889, 2667, 3937, 8191, 11811, 24573, 27559, 57337, 82677, 131071, 172011, 253921, 393213, 524287, 761763, 917497, 1040257, 1572861, 1777447, 2752491, 3120771, 3670009, 4063201, 5332341, 7281799, 11010027, 12189603
Offset: 1
Keywords
Examples
a(20) = 82677 = 3*7*31*127, whose sum of divisors is 131072 = 2^17; a(27) = 1040257 = 127*8191, whose sum of divisors is 1048576 = 2^20.
References
- J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problem 264 pp. 188, Ellipses Paris 2004.
- R. Sivaramakrishnan, Classical Theory of Arithmetic Functions. Dekker, 1989.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..5000 from T. D. Noe)
- Kevin S. Brown, Sum of Divisors Equals a Power of 2.
- C. D. H. Cooper, Problem E 2493, The American Mathematical Monthly, Vol. 81, No. 8 (1974), p. 902; W. J. Dodge, solution, ibid., Vol. 82, No. 8 (1975), pp. 855-856.
- Jeffrey Shallit, Problem 1319, Diophantine Equation, sigma(n) = 2^m, Math. Magazine, 63 (1990), 129.
- Eric Weisstein's World of Mathematics, Divisor Function.
Programs
-
Maple
mersennes:= [seq(numtheory:-mersenne([i]),i=1..10)]: sort(select(`<`,map(convert,combinat:-powerset(mersennes),`*`),numtheory:-mersenne([11]))); # Robert Israel, May 01 2016
-
Mathematica
{1}~Join~TakeWhile[Times @@@ Rest@ Subsets@ # // Sort, Function[k, k <= Last@ #]] &@ Select[2^Range[0, 31] - 1, PrimeQ] (* Michael De Vlieger, May 01 2016 *)
-
PARI
isok(n) = (n==1) || (ispower(sigma(n), , &r) && (r==2)); \\ Michel Marcus, Dec 10 2013
Formula
Sum_{n>=1} 1/a(n) = Product_{p in A000668} (1 + 1/p) = 1.5855588879... (A306204) - Amiram Eldar, Jan 06 2021
Extensions
More terms from Benoit Cloitre, Feb 22 2002
Further terms from Jon Hart, Sep 22 2006
Entry revised by N. J. A. Sloane, Mar 20 2007
Three more terms from Michel Marcus, Dec 10 2013
Comments