A046738 Period of Fibonacci 3-step sequence A000073 mod n.
1, 4, 13, 8, 31, 52, 48, 16, 39, 124, 110, 104, 168, 48, 403, 32, 96, 156, 360, 248, 624, 220, 553, 208, 155, 168, 117, 48, 140, 1612, 331, 64, 1430, 96, 1488, 312, 469, 360, 2184, 496, 560, 624, 308, 440, 1209, 2212, 46, 416, 336, 620, 1248, 168
Offset: 1
Links
- T. D. Noe [1..1000] + Jean-François Alcover [1001..2000] + Zhong Ziqian [2001..20000], Table of n, a(n) for n = 1..20000
- Jirí Klaška, A search for Tribonacci-Wieferich primes, Acta Mathematica Universitatis Ostraviensis, vol. 16 (2008), issue 1, pp. 15-20.
- Jirí Klaška, On Tribonacci-Wieferich primes, Fibonacci Quart. 46/47 (2008/2009), no. 4, 290-297.
- Jirí Klaška, Tribonacci partition formulas modulo m, Acta Mathematica Sinica, English Series, March 2010, Volume 26, Issue 3, pp 465-476.
- M. E. Waddill, Some properties of a generalized Fibonacci sequence modulo m, The Fibonacci Quarterly, vol. 16, no. 4, pp. 344-353 (1978).
Programs
-
Maple
a:= proc(n) local f, k, l; l:= ifactors(n)[2]; if nops(l)<>1 then ilcm(seq(a(i[1]^i[2]), i=l)) else f:= [0, 0, 1]; for k do f:=[f[2], f[3], f[1]+f[2]+f[3] mod n]; if f=[0, 0, 1] then break fi od; k fi end: seq(a(n), n=1..100); # Alois P. Heinz, Aug 27 2023
-
Mathematica
Table[a = {0, 1, 1}; a = a0 = Mod[a, n]; k = 0; While[k++; s = a[[3]] + a[[2]] + a[[1]]; a = RotateLeft[a]; a[[-1]] = Mod[s, n]; a != a0]; k, {n, 100}] (* T. D. Noe, Aug 28 2012 *)
-
Python
from itertools import count def A046738(n): a = b = (0,0,1%n) for m in count(1): b = b[1:] + (sum(b) % n,) if a == b: return m # Chai Wah Wu, Feb 27 2022
Formula
a(3^k) = 13*3^(k-1) for k > 0. If a(p) != a(p^2) for p prime, then a(p^k) = p^(k-1)*a(p) for k > 0 [Waddill, 1978]. - Chai Wah Wu, Feb 25 2022
Let the prime factorization of n be p1^e1*...*pk^ek. Then a(n) = lcm(a(p1^e1), ..., a(pk^ek)) [Waddill, 1978]. - Avery Diep, Aug 26 2025
Comments