A046765 Number of partitions of n with equal number of parts congruent to each of 0, 1 and 2 (mod 3).
1, 0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 0, 7, 0, 0, 13, 0, 0, 25, 0, 0, 43, 0, 0, 77, 0, 0, 130, 0, 0, 222, 0, 0, 365, 0, 0, 603, 0, 0, 966, 0, 0, 1546, 0, 0, 2425, 0, 0, 3783, 0, 0, 5813, 0, 0, 8884, 0, 0, 13411, 0, 0, 20130, 0, 0, 29922, 0, 0, 44217, 0, 0, 64814, 0, 0, 94485, 0, 0
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Last /@ Transpose /@ Tally /@ Mod[IntegerPartitions[n], 3], Length[#] == 3 && Length[Union[#]] == 1 &]], {n, 50}] (* Jayanta Basu, Jun 28 2013 *)
-
PARI
seq(n)={Vec(sum(k=0, n\6, x^(6*k)/prod(j=1, k, 1 - x^(3*j) + O(x*x^n))^3) + O(x*x^n))} \\ Andrew Howroyd, Sep 16 2019
Formula
G.f.: Sum_{k>=0} x^(6*k)/(Product_{j=1..k} 1 - x^(3*j))^3. - Andrew Howroyd, Sep 16 2019
Comments