A046790 Positive numbers divisible by 8 or by the square of an odd prime.
8, 9, 16, 18, 24, 25, 27, 32, 36, 40, 45, 48, 49, 50, 54, 56, 63, 64, 72, 75, 80, 81, 88, 90, 96, 98, 99, 100, 104, 108, 112, 117, 120, 121, 125, 126, 128, 135, 136, 144, 147, 150, 152, 153, 160, 162, 168, 169, 171, 175, 176, 180, 184, 189, 192, 196, 198, 200, 207, 208
Offset: 1
Links
- M. F. Hasler, Table of n, a(n) for n = 1..10000 (first 290 terms from N. J. A. Sloane).
- Emmanuel Amiot, Autosimilar Melodies, J. Math. Music 2 (2008), no. 3, 157-180. DOI: 10.1080/17459730802598146.
- Emmanuel Amiot, Mélodies autosimilaires (Self-Replicating Melodies) (in French).
- Don Reble, Proof of equivalence of definitions (D1)-(D5), Jun 06 2016
- Mathematics Stack Exchange user "George", Semiperimeter of isosceles Heronian triangles.
Programs
-
Mathematica
ordreMax[a_, n_]:= Module[{mo, r, s, s0, gcd}, mo=MultiplicativeOrder[a,n]; s= s0=Mod[Sum[a^k,{k,0,mo-1}], n]; Max[Table[gcd=GCD[a-1,b];r=1; While[Mod[s *gcd, n]!=0, s=Mod[s0+a^mos,n];r++ ]; r*mo, {b,0,n-1} ]] ] ordreMax[n_] := Module[{candidats, m,t}, candidats = Select[Range[2,n-1], (GCD[n,# ]==1 && GCD[n, #-1]>1)&]; m=Max[t=Table[ordreMax[a,n], {a, candidats}] ]; {m,Part[candidats,Flatten@Position[t, m] ]}] Module[{resu}, Do[resu=ordreMax[n]; If[First[resu] >=n, Print[n ]], {n,4,200}]] (* This is for definition (D2). Emmanuel Amiot, Jul 28 2007 *) Select[Range[210], Mod[#, 8] == 0 || AnyTrue[ Divisors[#], DivisorSigma[0, #] == 3 && Mod[#, 4] != 0 &] &] (* Carlos Eduardo Olivieri, Jun 07 2016 *) Module[{upto=250,prs},prs=Prime[Range[2,PrimePi[Sqrt[upto]]]]^2;Join[ Range[ 8,upto,8],Select[Range[upto],AnyTrue[#/prs,IntegerQ]&]]] // Union (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 18 2018 *)
-
PARI
is(n)={n%8==0||!issquarefree(n>>!bittest(n,0))} \\ M. F. Hasler, Jun 07 2016
-
Sage
print([n for n in (1..208) if not ZZ(n).divides(2*radical(n))]) # Peter Luschny, Mar 05 2019
Formula
Let A(x) be the number of a(n) <= x. Then A(x) ~ (1 - 7/Pi^2)*x = 0.2907517...*x as x goes to infinity. - Vladimir Shevelev, Jun 07 2016
Extensions
Entry revised by N. J. A. Sloane, with help from Don Reble and several OEIS editors, Jun 07 2016
Comments