A046854 Triangle read by rows: T(n, k) = binomial(floor((n+k)/2), k), n >= k >= 0.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 3, 3, 4, 1, 1, 1, 3, 6, 4, 5, 1, 1, 1, 4, 6, 10, 5, 6, 1, 1, 1, 4, 10, 10, 15, 6, 7, 1, 1, 1, 5, 10, 20, 15, 21, 7, 8, 1, 1, 1, 5, 15, 20, 35, 21, 28, 8, 9, 1, 1, 1, 6, 15, 35, 35, 56, 28, 36, 9, 10, 1, 1, 1, 6, 21, 35, 70, 56, 84, 36, 45, 10, 11, 1, 1
Offset: 0
Examples
Triangle begins: 1; 1 1; 1 1 1; 1 2 1 1; 1 2 3 1 1; 1 3 3 4 1 1; ...
References
- J. Riordan, An Introduction to Combinatorial Analysis, Princeton University Press, 1978. [Emeric Deutsch, Jun 18 2010]
Links
- Nathaniel Johnston, Rows 0..100, flattened
- Robert G. Donnelly, Molly W. Dunkum, and Rachel McCoy, Olry Terquem's forgotten problem, arXiv:2303.05949 [math.HO], 2023.
- Jeremy M. Dover, Some Notes on Pairs in Binary Strings, arXiv:1609.00980 [math.CO], 2016.
- Dominique Foata and Guo-Niu Han, Multivariable Tangent and Secant q-derivative Polynomials, arXiv:1304.2486 [math.CO], 2013; see Fig. 10.1.
- Index entries for triangles and arrays related to Pascal's triangle
Crossrefs
Programs
-
GAP
Flat(List([0..16], n-> List([0..n], k-> Binomial(Int((n+k)/2), k) ))); # G. C. Greubel, Jul 13 2019
-
Haskell
a046854 n k = a046854_tabl !! n !! k a046854_row n = a046854_tabl !! n a046854_tabl = [1] : f [1] [1,1] where f us vs = vs : f vs (zipWith (+) (us ++ [0,0]) ([0] ++ vs)) -- Reinhard Zumkeller, Apr 24 2013
-
Magma
[Binomial(Floor((n+k)/2), k): k in [0..n], n in [0..16]]; // G. C. Greubel, Jul 13 2019
-
Maple
A046854:= proc(n,k): binomial(floor(n/2+k/2), k) end: seq(seq(A046854(n,k),k=0..n),n=0..16); # Nathaniel Johnston, Jun 30 2011
-
Mathematica
Table[Binomial[Floor[(n+k)/2], k], {n,0,16}, {k,0,n}]//Flatten (* next program: Polynomials *) z = 12; f[x_, n_] := x + 1/f[x, n - 1]; f[x_, 1] = 1; t = Table[Factor[f[x, n]], {n, 1, z}] u = Flatten[CoefficientList[Numerator[t], x]] (* this sequence *) v = Flatten[CoefficientList[Denominator[t], x]] (* Clark Kimberling, Oct 13 2014 *)
-
PARI
T(n,k) = binomial((n+k)\2, k); \\ G. C. Greubel, Jul 13 2019
-
Sage
[[binomial(floor((n+k)/2), k) for k in (0..n)] for n in (0..16)] # G. C. Greubel, Jul 13 2019
Formula
T(n,k) = binomial(floor((n+k)/2), k).
G.f.: (1+x)/(1-x*y-x^2). - Ralf Stephan, Feb 13 2005
T(n,k) = A065941(n,n-k) = abs(A130777(n,k)) = abs(A066170(n,k)) = abs(A187660(n,k)). - Johannes W. Meijer, Aug 08 2011
For n > 1: T(n, k) = T(n-1, k-1) + T(n-2, k), 0 < k < n-1. - Reinhard Zumkeller, Apr 24 2013
Comments