cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046854 Triangle read by rows: T(n, k) = binomial(floor((n+k)/2), k), n >= k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 3, 3, 4, 1, 1, 1, 3, 6, 4, 5, 1, 1, 1, 4, 6, 10, 5, 6, 1, 1, 1, 4, 10, 10, 15, 6, 7, 1, 1, 1, 5, 10, 20, 15, 21, 7, 8, 1, 1, 1, 5, 15, 20, 35, 21, 28, 8, 9, 1, 1, 1, 6, 15, 35, 35, 56, 28, 36, 9, 10, 1, 1, 1, 6, 21, 35, 70, 56, 84, 36, 45, 10, 11, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Row sums are Fibonacci(n+2). Diagonal sums are A016116. - Paul Barry, Jul 07 2004
Riordan array (1/(1-x), x/(1-x^2)). Matrix inverse is A106180. - Paul Barry, Apr 24 2005
As an infinite lower triangular matrix * [1,2,3,...] = A055244. - Gary W. Adamson, Dec 23 2008
From Emeric Deutsch, Jun 18 2010: (Start)
T(n,k) is the number of alternating parity increasing subsequences of {1,2,...,n} of size k, starting with an odd number (Terquem's problem, see the Riordan reference, p. 17). Example: T(8,5)=6 because we have 12345, 12347, 12367, 12567, 14567, and 34567.
T(n,k) is the number of alternating parity increasing subsequences of {1,2,...,n,n+1} of size k, starting with an even number. Example: T(7,4)=5 because we have 2345, 2347, 2367, 2567, and 4567. (End)
From L. Edson Jeffery, Mar 01 2011: (Start)
This triangle can be constructed as follows. Interlace two copies of the table of binomial coefficients to get the preliminary table
1
1
1 1
1 1
1 2 1
1 2 1
1 3 3 1
1 3 3 1
...,
then shift each entire r-th column up r rows, r=0,1,2,.... Also, a signed version of this sequence (A187660 in tabular form) begins with
1;
1, -1;
1, -1, -1;
1, -2, -1, 1;
1, -2, -3, 1, 1;
...
(compare with A066170, A130777). Let T(N,k) denote the k-th entry in row N of the signed table. Then, for N>1, row N gives the coefficients of the characteristic function p_N(x) = Sum_{k=0..N} T(N,k)*x^(N-k) = 0 of the N X N matrix U_N=[(0 ... 0 1);(0 ... 0 1 1);...;(0 1 ... 1);(1 ... 1)]. Now let Q_r(t) be a polynomial with recurrence relation Q_r(t)=t*Q_(r-1)(t)-Q_(r-2)(t) (r>1), with Q_0(t)=1 and Q_1(t)=t. Then p_N(x)=0 has solutions Q_(N-1)(phi_j), where phi_j=2*(-1)^(j-1)*cos(j*Pi/(2*N+1)), j=1,2,...,N.
For example, row N=3 is {1,-2,-1,1}, giving the coefficients of the characteristic function p_3(x) = x^3-2*x^2-x+1 = 0 for the 3 X 3 matrix U_3=[(0 0 1);(0 1 1);(1 1 1)], with eigenvalues Q_2(phi_j)=[2*(-1)^(j-1)*cos(j*Pi/7)]^2-1, j=1,2,3. (End)
Given the signed polynomials (+--++--,...) of the triangle, the largest root of the n-th row polynomial is the longest (2n+1) regular polygon diagonal length, with edge = 1. Example: the largest root to x^3 - 2x^2 - x + 1 = 0 is 2.24697...; the longest heptagon diagonal, sin(3*Pi/7)/sin(Pi/7). - Gary W. Adamson, Sep 06 2011
Given the signed polynomials from Gary W. Adamson's comment, the largest root of the n-th polynomial also equals the length from the center to a corner (vertex) of a regular 2*(2*n+1)-sided polygon with side (edge) length = 1. - L. Edson Jeffery, Jan 01 2012
Put f(x,0) = 1 and f(x,n) = x + 1/f(x,n-1). Then f(x,n) = u(x,n)/v(x,n), where u(x,n) and v(x,n) are polynomials. The flattened triangles of coefficients of u and v are both essentially A046854, as indicated by the Mathematica program headed "Polynomials". - Clark Kimberling, Oct 12 2014
From Jeremy Dover, Jun 07 2016: (Start)
T(n,k) is the number of binary strings of length n+1 starting with 0 that have exactly k pairs of consecutive 0's and no pairs of consecutive 1's.
T(n,k) is the number of binary strings of length n+2 starting with 1 that have exactly k pairs of consecutive 0's and no pairs of consecutive 1's. (End)

Examples

			Triangle begins:
  1;
  1 1;
  1 1 1;
  1 2 1 1;
  1 2 3 1 1;
  1 3 3 4 1 1;
  ...
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Princeton University Press, 1978. [Emeric Deutsch, Jun 18 2010]

Crossrefs

Reflected version of A065941, which is considered the main entry. A deficient version is in A030111.
Cf. A055244. - Gary W. Adamson, Dec 23 2008

Programs

  • GAP
    Flat(List([0..16], n-> List([0..n], k-> Binomial(Int((n+k)/2), k) ))); # G. C. Greubel, Jul 13 2019
  • Haskell
    a046854 n k = a046854_tabl !! n !! k
    a046854_row n = a046854_tabl !! n
    a046854_tabl = [1] : f [1] [1,1] where
       f us vs = vs : f vs  (zipWith (+) (us ++ [0,0]) ([0] ++ vs))
    -- Reinhard Zumkeller, Apr 24 2013
    
  • Magma
    [Binomial(Floor((n+k)/2), k): k in [0..n], n in [0..16]]; // G. C. Greubel, Jul 13 2019
    
  • Maple
    A046854:= proc(n,k): binomial(floor(n/2+k/2), k) end: seq(seq(A046854(n,k),k=0..n),n=0..16); # Nathaniel Johnston, Jun 30 2011
  • Mathematica
    Table[Binomial[Floor[(n+k)/2], k], {n,0,16}, {k,0,n}]//Flatten
    (* next program: Polynomials *)
    z = 12; f[x_, n_] := x + 1/f[x, n - 1]; f[x_, 1] = 1;
    t = Table[Factor[f[x, n]], {n, 1, z}]
    u = Flatten[CoefficientList[Numerator[t], x]] (* this sequence *)
    v = Flatten[CoefficientList[Denominator[t], x]]
    (* Clark Kimberling, Oct 13 2014 *)
  • PARI
    T(n,k) = binomial((n+k)\2, k); \\ G. C. Greubel, Jul 13 2019
    
  • Sage
    [[binomial(floor((n+k)/2), k) for k in (0..n)] for n in (0..16)] # G. C. Greubel, Jul 13 2019
    

Formula

T(n,k) = binomial(floor((n+k)/2), k).
G.f.: (1+x)/(1-x*y-x^2). - Ralf Stephan, Feb 13 2005
Triangle = A097806 * A168561, as infinite lower triangular matrices. - Gary W. Adamson, Oct 28 2007
T(n,k) = A065941(n,n-k) = abs(A130777(n,k)) = abs(A066170(n,k)) = abs(A187660(n,k)). - Johannes W. Meijer, Aug 08 2011
For n > 1: T(n, k) = T(n-1, k-1) + T(n-2, k), 0 < k < n-1. - Reinhard Zumkeller, Apr 24 2013
T(n,k) = A168561(n,k) + A168561(n-1,k). - R. J. Mathar, Feb 10 2024