cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A046921 Number of ways to express 2n+1 as p+2a^2; p = 1 or prime, a >= 0.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 3, 2, 1, 4, 3, 2, 3, 1, 2, 4, 2, 2, 4, 3, 2, 3, 3, 2, 4, 3, 2, 5, 1, 2, 6, 3, 1, 3, 4, 2, 5, 4, 2, 6, 3, 2, 4, 2, 3, 6, 2, 1, 4, 3, 4, 6, 4, 2, 6, 5, 2, 6, 3, 2, 5, 1, 2, 3, 5, 4, 5, 4, 1, 8, 4, 1, 6, 3, 2, 6, 2, 2, 6, 6, 1, 4, 5, 3, 7, 4, 3, 6, 2, 3, 10, 2, 3, 4, 4, 3, 3, 4, 2
Offset: 0

Views

Author

Keywords

Comments

Goldbach conjectured this sequence is never zero.
The only zero terms appear to be for the odd numbers 5777 and 5993. - T. D. Noe, Aug 23 2008

Crossrefs

Programs

Formula

a(n) = A046920(A005408(n)). - Reinhard Zumkeller, Apr 03 2013

A016067 Consider all ways of writing a number as p+2m^2 where p is 1 or a prime and m >= 0; sequence gives numbers that are expressible in at least 2 more ways than any smaller number.

Original entry on oeis.org

139, 181, 619, 2341, 3331, 4189, 4801, 5911, 6319, 8251, 9751, 11311, 12739, 13051, 15889, 20641, 21349, 22741, 23659, 24079, 32191, 33631, 39961, 42871, 45769, 56131, 57511, 65341, 71839, 80149, 90919, 95989, 99181, 105271, 119131, 130651, 157261, 167359
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List (findIndices)
    a016067 n = a016067_list !! (n-1)
    a016067_list = (map (+ 1) $ findIndices (> 1) $
       zipWith (-) (tail rs) rs where rs = scanl max 0 a046920_list
    -- Reinhard Zumkeller, Aug 26 2013, Apr 03 2013
    
  • PARI
    /* finds first 80 terms */ mx=6023671; v=vector(mx); p=vector(414391); p[1]=1; pr=1; for(j=2, 414391, pr=nextprime(pr+1); p[j]=pr); for(m=0, 1735, m2=2*m^2; for(j=1, 414391, s=m2+p[j]; if(s<=mx, v[s]++, next(2)))); c=0; n=0; for(j=1, mx, if(v[j]>c, if(v[j]>=c+2, n++; write("b016067.txt", n " " j)); c=v[j])) /* Donovan Johnson, Aug 24 2013 */

Formula

Max{A046920(k): k <= a(n)} + 1 < A046920(a(n)). - Reinhard Zumkeller, Aug 26 2013, Apr 03 2013

Extensions

Better description and more terms from Jud McCranie, Jun 16 2000
Invalid first term removed by Donovan Johnson, Aug 24 2013

A046923 Number of ways to express 2n+1 as p+2a^2; p prime, a >= 0.

Original entry on oeis.org

0, 1, 2, 2, 1, 2, 3, 2, 1, 3, 3, 2, 3, 1, 2, 4, 1, 2, 4, 3, 2, 3, 3, 2, 4, 2, 2, 5, 1, 2, 6, 3, 1, 3, 4, 2, 4, 4, 2, 6, 3, 2, 4, 2, 3, 6, 2, 1, 4, 2, 4, 6, 4, 2, 6, 5, 2, 6, 3, 2, 5, 1, 2, 3, 4, 4, 5, 4, 1, 8, 4, 1, 6, 3, 2, 6, 2, 2, 6, 6, 1, 3, 5, 3, 7, 4, 3, 6, 2, 3, 10, 2, 3, 4, 4, 3, 3, 4, 2
Offset: 0

Views

Author

Keywords

Comments

The only zero terms appear to be for the odd numbers 1, 5777 and 5993. - T. D. Noe, Aug 23 2008
a(n) = A046922(A005408(n)). - Reinhard Zumkeller, Apr 03 2013

Crossrefs

Programs

Extensions

Definition corrected by T. D. Noe, Aug 23 2008

A046922 Number of ways to express n as p+2a^2; p prime, a >= 0.

Original entry on oeis.org

0, 1, 1, 1, 2, 0, 2, 0, 1, 1, 2, 0, 3, 0, 2, 0, 1, 0, 3, 1, 3, 0, 2, 0, 3, 0, 1, 0, 2, 0, 4, 0, 1, 1, 2, 0, 4, 0, 3, 0, 2, 0, 3, 0, 3, 0, 2, 0, 4, 0, 2, 1, 2, 0, 5, 0, 1, 0, 2, 0, 6, 0, 3, 0, 1, 0, 3, 0, 4, 0, 2, 0, 4, 1, 4, 0, 2, 0, 6, 0, 3, 0, 2, 0, 4, 0, 2, 0, 3, 0, 6, 0, 2, 0, 1, 0, 4, 0, 2
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a046922 n = sum $ map (a010051 . (n -)) $ takeWhile (< n) a001105_list
    -- Reinhard Zumkeller, Apr 03 2013

A346368 Odd numbers that can be written in a single way as 2*k^2+p, k>0, p prime.

Original entry on oeis.org

5, 7, 9, 11, 23, 27, 29, 33, 41, 47, 53, 57, 59, 65, 71, 83, 95, 107, 113, 123, 143, 149, 161, 197, 233, 239, 257, 281, 287, 317, 323, 347, 383, 407, 413, 443, 449, 569, 743, 773, 785, 863, 1227, 1367, 1415, 1703, 1787, 2123, 2507, 2933, 3317, 3515, 3713, 4673, 5987, 6797
Offset: 1

Views

Author

Bernard Pitie, Jul 14 2021

Keywords

Comments

The next element, if it exists, is greater than 10^8.

Crossrefs

Programs

  • PARI
    isok(m) = (m>3) && (m % 2) && (sum(i=1, sqrtint((m-3)/2), isprime(m-2*i^2)) == 1); \\ Michel Marcus, Jul 22 2021
Showing 1-5 of 5 results.