cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046932 a(n) = period of x^n + x + 1 over GF(2), i.e., the smallest integer m>0 such that x^n + x + 1 divides x^m + 1 over GF(2).

Original entry on oeis.org

1, 3, 7, 15, 21, 63, 127, 63, 73, 889, 1533, 3255, 7905, 11811, 32767, 255, 273, 253921, 413385, 761763, 5461, 4194303, 2088705, 2097151, 10961685, 298935, 125829105, 17895697, 402653181, 10845877, 2097151, 1023, 1057, 255652815, 3681400539
Offset: 1

Views

Author

Keywords

Comments

Also, the multiplicative order of x modulo the polynomial x^n + x + 1 (or its reciprocal x^n + x^(n-1) + 1) over GF(2).
For n>1, let S_0 = 11...1 (n times) and S_{i+1} be formed by applying D to last n bits of S_i and appending result to S_i, where D is the first difference modulo 2 (e.g., a,b,c,d,e -> a+b,b+c,c+d,d+e). The period of the resulting infinite string is a(n). E.g., n=4 produces 1111000100110101111..., so a(4) = 15.
Also, the sequence can be constructed in the same way as A112683, but using the recurrence x(i) = 2*x(i-1)^2 + 2*x(i-1) + 2*x(i-n)^2 + 2*x(i-n) mod 3.
From Ben Branman, Aug 12 2010: (Start)
Additionally, the pseudorandom binary sequence determined by the recursion
If xn, f(x)=f(x-1) XOR f(x-n).
The resulting sequence f(x) has period a(n).
For example, if n=4, then the sequence f(x) is has period 15: 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0
so a(4)=15. (End)

Crossrefs

Programs

  • Mathematica
    (* This program is not suitable to compute a large number of terms. *)
    a[n_] := Module[{f, ff}, f[x_] := f[x] = If[xJean-François Alcover, Sep 10 2018, after Ben Branman *)
  • PARI
    a(n) = {pola = Mod(1,2)*(x^n+x+1); m=1; ok = 0; until (ok, polb = Mod(1,2)*(x^m+1); if (type(polb/pola) == "t_POL", ok = 1; break;); if (!ok, m++);); return (m);} \\ Michel Marcus, May 20 2013

Formula

a(2^k) = 2^(2*k) - 1.
a(2^k + 1) = 2^(2*k) + 2^k + 1.
Conjecture: a(2^k - 1) = 2^a(k) - 1. [See Bartholdi, 2000]
More general conjecture: a( (2^(k*m) - 1) / (2^m-1) ) = (2^(a(k)*m) - 1) / (2^m-1). For m=1, it would imply Bartholdi conjecture. - Max Alekseyev, Oct 21 2011

Extensions

More terms from Dean Hickerson
Entry revised and b-file supplied by Max Alekseyev, Mar 14 2008
b-file extended by Max Alekseyev, Nov 15 2014; Aug 17 2015