A046932 a(n) = period of x^n + x + 1 over GF(2), i.e., the smallest integer m>0 such that x^n + x + 1 divides x^m + 1 over GF(2).
1, 3, 7, 15, 21, 63, 127, 63, 73, 889, 1533, 3255, 7905, 11811, 32767, 255, 273, 253921, 413385, 761763, 5461, 4194303, 2088705, 2097151, 10961685, 298935, 125829105, 17895697, 402653181, 10845877, 2097151, 1023, 1057, 255652815, 3681400539
Offset: 1
Links
- Max Alekseyev, Table of n, a(n) for n = 1..1223
- Tej Bade, Kelly Cui, Antoine Labelle, and Deyuan Li, Ulam Sets in New Settings, arXiv:2008.02762 [math.CO], 2020. See also Integers (2020) Vol. 20, #A102.
- L. Bartholdi, Lamps, Factorizations and Finite Fields, arXiv:math/9910056 [math.CO], 1999; Amer. Math. Monthly (2000), 107(5), 429-436.
- Steven R. Finch, Periodicity in Sequences Mod 3 [Broken link]
- Steven R. Finch, Periodicity in Sequences Mod 3 [From the Wayback machine]
- International Math Olympiad, Problem 6, 1993.
- Index entries for sequences related to trinomials over GF(2)
Programs
-
Mathematica
(* This program is not suitable to compute a large number of terms. *) a[n_] := Module[{f, ff}, f[x_] := f[x] = If[x
Jean-François Alcover, Sep 10 2018, after Ben Branman *) -
PARI
a(n) = {pola = Mod(1,2)*(x^n+x+1); m=1; ok = 0; until (ok, polb = Mod(1,2)*(x^m+1); if (type(polb/pola) == "t_POL", ok = 1; break;); if (!ok, m++);); return (m);} \\ Michel Marcus, May 20 2013
Formula
a(2^k) = 2^(2*k) - 1.
a(2^k + 1) = 2^(2*k) + 2^k + 1.
Conjecture: a(2^k - 1) = 2^a(k) - 1. [See Bartholdi, 2000]
More general conjecture: a( (2^(k*m) - 1) / (2^m-1) ) = (2^(a(k)*m) - 1) / (2^m-1). For m=1, it would imply Bartholdi conjecture. - Max Alekseyev, Oct 21 2011
Extensions
More terms from Dean Hickerson
Entry revised and b-file supplied by Max Alekseyev, Mar 14 2008
b-file extended by Max Alekseyev, Nov 15 2014; Aug 17 2015
Comments