cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A144727 Erroneous version of A046972.

Original entry on oeis.org

11, 31, 151, 1051, 10501, 126001, 1764001, 26460001, 502740001, 10557540001, 274496040001, 7960385160001, 238811554800001, 9313650637200001, 381859676125200001, 21384141863011200001, 1325816795506694400001
Offset: 1

Views

Author

Keywords

A046966 a(n) is the smallest number > a(n-1) such that a(1)*a(2)*...*a(n) + 1 is prime.

Original entry on oeis.org

1, 2, 3, 5, 6, 9, 12, 16, 22, 25, 29, 31, 35, 47, 57, 61, 66, 79, 81, 108, 114, 148, 163, 172, 185, 198, 203, 205, 236, 265, 275, 282, 294, 312, 344, 359, 377, 397, 398, 411, 427, 431, 493, 512, 589, 647, 648, 660, 708, 719, 765, 887, 911, 916, 935, 1062, 1093
Offset: 1

Views

Author

Keywords

Examples

			1*2*3*5 + 1 = 31 is prime.
		

References

  • H. Dubner, Recursive Prime Generating Sequences, Table 4 pp. 173 Journal of Recreational Mathematics 29(3) 1998 Baywood NY.

Crossrefs

Cf. A046972.

Programs

  • Mathematica
    a[1] = 1; p[1] = 1;
    a[n_] := a[n] = For[an = a[n-1] + 1, True, an++, pn = p[n-1]*an; If[ PrimeQ[pn+1], p[n] = pn; Return[an] ] ];
    Table[a[n], {n, 1, 60}]
    (* Jean-François Alcover, Sep 17 2012 *)
    Module[{cc={1},k},Do[k=Last[cc]+1;While[!PrimeQ[Times@@Join[cc,{k}]+1], k++];AppendTo[cc,k],{60}];cc] (* Harvey P. Dale, Jan 21 2013 *)
    nxt[{t_,a_}]:=Module[{k=a+1},While[CompositeQ[t*k+1],k++];{t*k,k}]; NestList[nxt,{1,1},60][[All,2]] (* Harvey P. Dale, May 22 2021 *)
  • PARI
    first(n)=my(v=vector(n),N=1,t=1); v[1]=1; for(k=2,n, while(!ispseudoprime(1 + N*t++),); N*=v[k]=t); v \\ Charles R Greathouse IV, Apr 07 2020

Extensions

More terms from Jason Earls, Jan 25 2002
Definition corrected by T. D. Noe, Feb 14 2007

A144729 Primes arising in A144728.

Original entry on oeis.org

7, 13, 37, 181, 1621, 19441, 311041, 6842881, 171072001, 4961088001, 153793728001, 5382780480001, 252990682560001, 14420468905920001, 879648603261120001, 58056807815233920001, 4586487817403479680001
Offset: 1

Views

Author

Artur Jasinski, Sep 19 2008; corrected Sep 19 2008

Keywords

Crossrefs

A144717 a(n) = smallest positive integer > a(n-1) such that 2*a(1)*a(2)*...*a(n) + 1 is prime.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 9, 11, 12, 14, 17, 20, 24, 30, 34, 44, 72, 85, 86, 92, 115, 122, 125, 132, 142, 150, 161, 162, 181, 186, 198, 224, 248, 252, 282, 283, 290, 307, 319, 321, 344, 350, 376, 445, 476, 567, 623, 676, 682, 704, 741, 749, 786, 803, 806, 893, 1014, 1046
Offset: 1

Views

Author

Artur Jasinski, Sep 19 2008

Keywords

Examples

			a(1)=1 because a(0) is not defined and 2*1 + 1 = 3 is prime;
a(2)=2 because 2*1*2 + 1 = 5 is prime;
a(3)=3 because 2*1*2*3 + 1 = 13 is prime;
a(4) is not 4 because 2*1*2*3*4 + 1 = 49 is not prime, but a(4)=5 works because 2*1*2*3*5 + 1 = 61 is prime.
		

Crossrefs

Programs

  • Mathematica
    k = 2; a = {}; Do[If[PrimeQ[k n + 1], k = k n; AppendTo[a, n]], {n, 1, 3000}]; a (* Artur Jasinski *)
    nxt[{p_,a_}]:=Module[{k=a+1},While[!PrimeQ[p*k+1],k++];{p*k,k}]; NestList[ nxt,{2,1},60][[All,2]] (* Harvey P. Dale, Aug 18 2021 *)
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        an, p = 1, 2
        while True:
            yield an
            an = next(k for k in count(an+1) if isprime(p*k+1))
            p *= an
    print(list(islice(agen(), 58))) # Michael S. Branicky, Jan 13 2023

Extensions

Edited by N. J. A. Sloane, Sep 21 2017 following suggestions from Richard C. Schroeppel

A144718 a(n) = n-th prime arising A144717.

Original entry on oeis.org

3, 5, 13, 61, 421, 3361, 30241, 332641, 3991681, 55883521, 950019841, 19000396801, 456009523201, 13680285696001, 465129713664001, 20465707401216001, 1473530932887552001, 125250129295441920001, 10771511119408005120001
Offset: 1

Views

Author

Artur Jasinski, Sep 19 2008

Keywords

Crossrefs

Programs

  • Mathematica
    k = 2; a = {}; Do[If[PrimeQ[k n + 1], AppendTo[a, k n+1 ]; k = k n ], {n, 1, 3000}]; a

Formula

a(n) = 2*Product_{k=1..n} A144717(k) + 1.

A144723 a(n)= primes arising A144722.

Original entry on oeis.org

7, 19, 73, 433, 3457, 72577, 1669249, 43400449, 1302013441, 46872483841, 1734281902081, 67636994181121, 2840753755607041, 153400702802780161, 8743840059758469121, 638300324362368245761, 52978926922076564398081
Offset: 1

Views

Author

Artur Jasinski, Sep 19 2008

Keywords

Crossrefs

Programs

  • Mathematica
    k = 3; a = {}; Do[If[PrimeQ[k n + 1], AppendTo[a, k n+1 ]; k = k n ], {n, 1, 3000}]; a (*Artur Jasinski*)

A144724 a(n) is the smallest positive integer such that b * (Product_{k=1..n} a(k)) + 1 is prime, with b = 4.

Original entry on oeis.org

1, 3, 5, 7, 8, 9, 11, 12, 14, 17, 20, 24, 30, 34, 44, 72, 85, 86, 92, 115, 122, 125, 132, 142, 150, 161, 162, 181, 186, 198, 224, 248, 252, 282, 283, 290, 307, 319, 321, 344, 350, 376, 445, 476, 567, 623, 676, 682, 704, 741, 749, 786, 803, 806, 893, 1014, 1046, 1079
Offset: 1

Views

Author

Artur Jasinski, Sep 19 2008

Keywords

Comments

Is this A144717 without the 2? - R. J. Mathar, Jul 24 2023

Examples

			4*1+1=5 is prime => a(1)=1.
4*1*2+1=9 is not prime (omitted).
4*1*3+1=13 is prime => a(2)=3.
		

Crossrefs

Programs

  • Mathematica
    k = 4; a = {}; Do[If[PrimeQ[k n + 1], k = k n; AppendTo[a, n]], {n, 1, 3000}]; a (* Artur Jasinski *)

Extensions

Definition corrected by Georg Fischer, Jun 18 2021

A144725 Primes arising in A144724.

Original entry on oeis.org

5, 13, 61, 421, 3361, 30241, 332641, 3991681, 55883521, 950019841, 19000396801, 456009523201, 13680285696001, 465129713664001, 20465707401216001, 1473530932887552001, 125250129295441920001
Offset: 1

Views

Author

Artur Jasinski, Sep 19 2008; corrected Sep 19 2008

Keywords

Comments

Is this A144718 without the 3? - R. J. Mathar, Jul 24 2023

Crossrefs

A144726 Incorrect duplicate of A046966.

Original entry on oeis.org

2, 3, 5, 7, 10, 12, 14, 15, 19, 21, 26, 29, 30, 39, 41, 56, 62, 77, 96, 105, 112, 113, 115, 121, 136, 145, 159, 168, 188, 236, 240, 258, 281, 305, 324, 362, 376, 422, 521, 588, 639, 643, 652, 695, 698, 737, 770, 776, 784, 806, 807, 809, 818, 959, 1023, 1060, 1071
Offset: 1

Views

Author

Artur Jasinski, Sep 19 2008

Keywords

Comments

Previous name was: a(n) is the smallest integer greater than a(n-1) such that a(1)*a(2)*...*a(n) + 1 is prime.

Crossrefs

Programs

  • Mathematica
    k = 5; a = {}; Do[If[PrimeQ[k n + 1], k = k n; AppendTo[a, n]], {n, 1, 3000}]; a

A144722 a(n) is the smallest positive integer m such that b * (Product_{k=1..n} a(k)) + 1 is prime, with b = 3.

Original entry on oeis.org

2, 3, 4, 6, 8, 21, 23, 26, 30, 36, 37, 39, 42, 54, 57, 73, 83, 86, 88, 91, 93, 98, 99, 112, 120, 137, 140, 142, 148, 161, 162, 169, 171, 174, 179, 237, 247, 294, 312, 335, 340, 382, 474, 475, 484, 498, 500, 539, 589, 598, 653, 654, 660, 704, 720, 732, 789, 804
Offset: 1

Views

Author

Artur Jasinski, Sep 19 2008

Keywords

Examples

			3*1+1=4 is not prime (omitted).
a(1)=2 because 3*2+1=7 is prime.
a(2)=3 because 3*2*3+1=19 is prime.
		

Crossrefs

Programs

  • Mathematica
    k = 3; a = {}; Do[If[PrimeQ[k*n + 1], k = k*n; AppendTo[a, n]], {n, 1, 3000}]; a

Extensions

Definition corrected by Georg Fischer, Jun 18 2021
Showing 1-10 of 16 results. Next