A173380
Number of n-step walks on square lattice (no points repeated, no adjacent points unless consecutive in path).
Original entry on oeis.org
1, 4, 12, 28, 68, 164, 396, 940, 2244, 5324, 12668, 29940, 71012, 167468, 396172, 932628, 2201636, 5175268, 12195660, 28632804, 67374292, 158017740, 371354012, 870197548, 2042809996, 4783292988, 11218303476, 26250429540, 61514573604, 143857013260, 336865512780, 787374453524, 1842579846180
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Scott R. Shannon, Table of n, a(n) for n = 0..35
- D. Bennett-Wood, I. G. Enting, D. S. Gaunt, A. J. Guttmann, J. L. Leask, A. L. Owczarek, and S. G. Whittington, Exact enumeration study of free energies of interacting polygons and walks in two dimensions, J. Phys. A: Math. Gen. 31 (1998), 4725-4741. [See Table B1 (pp. 4738-4739), where the numbers must be multiplied by 4. - _Petros Hadjicostas_, Jan 05 2019]
- M. E. Fisher and B. J. Hiley, Configuration and free energy of a polymer molecule with solvent interaction, J. Chem. Phys., 34 (1961), 1253-1267.
- A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108.
- Sequence Fans Mailing list, discussion of this sequence, November 2010
A038746
Coefficients arising in the enumeration of configurations of linear chains.
Original entry on oeis.org
0, 1, 3, 8, 20, 49, 117, 280, 665, 1583, 3742, 8876, 20933, 49521, 116578, 275204, 646908, 1524457, 3579100, 8421786, 19752217, 46419251, 108774693, 255351249, 597911623, 1402287934, 3281303692, 7689321700, 17982126657, 42108189097, 98421806690, 230322480772
Offset: 1
- M. E. Fisher and B. J. Hiley, Configuration and free energy of a polymer molecule with solvent interaction, J. Chem. Phys., 34 (1961), 1253-1267.
- A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108; see Eq. 5 (p. 1090).
Initial 0 added to match offset in reference, further explanation and terms a(12) = 8876 to a(22) = 46419251 by
Joseph Myers, Nov 22 2010
A038747
Coefficients arising in the enumeration of configurations of linear chains.
Original entry on oeis.org
0, 0, 1, 4, 11, 32, 92, 254, 672, 1778, 4622, 11938, 30442, 77396, 194896, 489620, 1221134, 3040194, 7524933, 18600478, 45756483, 112444948, 275204606, 673031750, 1640168584, 3994716336, 9699476314
Offset: 1
- D. Bennett-Wood, I. G. Enting, D. S. Gaunt, A. J. Guttmann, J. L. Leask, A. L. Owczarek, and S. G. Whittington, Exact enumeration study of free energies of interacting polygons and walks in two dimensions, J. Phys. A: Math. Gen. 31 (1998), 4725-4741.
- M. E. Fisher and B. J. Hiley, Configuration and free energy of a polymer molecule with solvent interaction, J. Chem. Phys., 34 (1961), 1253-1267.
- A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108; see Eq. 5 (p. 1090) and Eq. 7b (p. 1093).
The first two 0's in the sequence were inserted by
Petros Hadjicostas, Jan 03 2019 to make it agree with Table II (p. 1093) and Eq. (5) (p. 1090) in the paper by Nemirovsky et al. (1992)
Terms a(12) to a(24) were copied from Table II, p. 4738, in the paper by Bennett-Wood et al. (1998) (after division by 2) by
Petros Hadjicostas, Jan 05 2019
A042949
Configurations of linear chains in a 4-dimensional hypercubic lattice.
Original entry on oeis.org
0, 0, 48, 576, 4752, 36864, 271680, 1931808, 13384320, 91133664, 610863072, 4051654752, 26592186336, 173304754368, 1121024960064
Offset: 1
A038749
Coefficients arising in the enumeration of configurations of linear chains.
Original entry on oeis.org
0, 0, 0, 2, 16, 96, 510, 2558, 12282, 57498, 263421, 1192480, 5330078, 23657520, 104106655, 455993276, 1984733843, 8609546380, 37164674383
Offset: 1
The first three 0's in the sequence were added by
Petros Hadjicostas, Jan 04 2019 to make it agree with Table II (p. 1093) and Eq. (5) (p. 1090) in the paper by Nemirovsky et al. (1992).
A336492
Total number of neighbor contacts for n-step self-avoiding walks on a 2D square lattice.
Original entry on oeis.org
0, 0, 8, 32, 152, 512, 1880, 5920, 19464, 59168, 183776, 545392, 1638400, 4778000, 14043224, 40422544, 116977176, 333346928, 953538440, 2695689520, 7642091352, 21464794032, 60417010152, 168787016352, 472315518008, 1313548558528, 3657850909680, 10133559518800
Offset: 1
a(1) = a(2) = 0 as a 1 and 2 step walk cannot approach a previous step.
a(3) = 8. The single walk where one interaction occurs, which can be taken in eight ways on a 2D square lattice, is:
.
+---+
|
X---+
.
Therefore, the total number of interactions is 1*1*8 = 8.
a(4) = 32. The four walks where one interaction occurs, each of which can be taken in eight ways on a 2D square lattice, are:
.
+---+---+ + +---+ +---+
| | | | |
X---+ +---+ X---+---+ X---+ +
|
X---+
.
Therefore, the total number of interactions is 4*1*8 = 32.
a(5) = 152. Considering only walks which start with one or more steps to the right followed by an upward step there are thirty-five different walks. Eleven of these have one neighbor contact (hence A033155(5) = 11*8 = 88) while four have two contacts. These are:
.
+---+---+ +---+---+ +---+ +---+
| | | | | |
+ X---+ X---+---+ +---+ + +
| |
X---+ X---+
.
Therefore, the total number of contacts is (11*1 + 4*2)*8 = 152.
- D. Bennett-Wood, I. G. Enting, D. S. Gaunt, A. J. Guttmann, J. L. Leask, A. L. Owczarek, and S. G. Whittington, Exact enumeration study of free energies of interacting polygons and walks in two dimensions, J. Phys. A: Math. Gen. 31 (1998), 4725-4741.
- M. E. Fisher and B. J. Hiley, Configuration and free energy of a polymer molecule with solvent interaction, J. Chem. Phys., 34 (1961), 1253-1267.
- A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108.
A038727
Configurations of linear chains in a 5-dimensional hypercubic lattice.
Original entry on oeis.org
0, 0, 80, 1280, 14320, 148480, 1459840, 13835680, 127784640, 1158460000, 10342876480, 91312921760, 798077066720, 6922857067840
Offset: 1
Terms a(10) and a(11) were copied from Table I, p. 1090, in Nemirovsky et al. (1992) by
Petros Hadjicostas, Jan 06 2019
A038745
Configurations of linear chains in a 6-dimensional hypercubic lattice.
Original entry on oeis.org
0, 0, 120, 2400, 33960, 441600, 5436960, 64509840, 745845120, 8461348080, 94558053840, 1044594244080, 11426874632880
Offset: 1
a(10)-a(11) copied from Table 1, p. 1090, of Nemirovsky et al. (1992) by
Petros Hadjicostas, Jan 06 2019
Showing 1-8 of 8 results.
Comments