A047208 Numbers that are congruent to {0, 4} mod 5.
0, 4, 5, 9, 10, 14, 15, 19, 20, 24, 25, 29, 30, 34, 35, 39, 40, 44, 45, 49, 50, 54, 55, 59, 60, 64, 65, 69, 70, 74, 75, 79, 80, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 114, 115, 119, 120, 124, 125, 129, 130, 134, 135, 139, 140, 144, 145, 149
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Cino Hilliard, solutions to 3^x + 5^x == 2 mod 11/, June 2003.
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Magma
[(5*(n-1) + 3*((n-1) mod 2))/2: n in [1..100]]; // G. C. Greubel, Nov 23 2021
-
Mathematica
{#,#+4}&/@(5*Range[0,30])//Flatten (* Harvey P. Dale, Apr 05 2019 *)
-
PARI
forstep(n=0,200,[4,1],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
-
Sage
[(5*(n-1) +3*((n-1)%2))/2 for n in (1..100)] # G. C. Greubel, Nov 23 2021
Formula
From R. J. Mathar, Jan 24 2009: (Start)
G.f.: x^2*(4+x)/((1-x)^2*(1+x)).
a(n) = a(n-2) + 5. (End)
a(n) = 5*n - 6 - a(n-1) (with a(1)=0). - Vincenzo Librandi, Nov 18 2010
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k), with b(0)=4 and b(k) = A020714(k-1) = 5*2^(k-1) for k>0. - Philippe Deléham, Oct 17 2011
a(n) = ceiling((5/3)*ceiling(3*n/2)). - Clark Kimberling, Jul 04 2012
a(n) = (5*(n-1) + 3*(n-1 mod 2))/2 = (5*(n-1) + A010674(n-1))/2. - G. C. Greubel, Nov 23 2021
Sum_{n>=2} (-1)^n/a(n) = log(5)/4 + log(phi)/(2*sqrt(5)) - sqrt(1+2/sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 07 2021
E.g.f.: 1 + ((5*x - 7/2)*exp(x) + (3/2)*exp(-x))/2. - David Lovler, Aug 23 2022
Comments