cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047208 Numbers that are congruent to {0, 4} mod 5.

Original entry on oeis.org

0, 4, 5, 9, 10, 14, 15, 19, 20, 24, 25, 29, 30, 34, 35, 39, 40, 44, 45, 49, 50, 54, 55, 59, 60, 64, 65, 69, 70, 74, 75, 79, 80, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 114, 115, 119, 120, 124, 125, 129, 130, 134, 135, 139, 140, 144, 145, 149
Offset: 1

Views

Author

Keywords

Comments

Also solutions to 3^x + 5^x == 2 (mod 11). - Cino Hilliard, May 18 2003

Crossrefs

Cf. A001622, A010674, A010685 (first differences), A274406.

Programs

  • Magma
    [(5*(n-1) + 3*((n-1) mod 2))/2: n in [1..100]]; // G. C. Greubel, Nov 23 2021
    
  • Mathematica
    {#,#+4}&/@(5*Range[0,30])//Flatten (* Harvey P. Dale, Apr 05 2019 *)
  • PARI
    forstep(n=0,200,[4,1],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
    
  • Sage
    [(5*(n-1) +3*((n-1)%2))/2 for n in (1..100)] # G. C. Greubel, Nov 23 2021

Formula

From R. J. Mathar, Jan 24 2009: (Start)
G.f.: x^2*(4+x)/((1-x)^2*(1+x)).
a(n) = a(n-2) + 5. (End)
a(n) = 5*n - 6 - a(n-1) (with a(1)=0). - Vincenzo Librandi, Nov 18 2010
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k), with b(0)=4 and b(k) = A020714(k-1) = 5*2^(k-1) for k>0. - Philippe Deléham, Oct 17 2011
a(n) = ceiling((5/3)*ceiling(3*n/2)). - Clark Kimberling, Jul 04 2012
a(n) = (5*(n-1) + 3*(n-1 mod 2))/2 = (5*(n-1) + A010674(n-1))/2. - G. C. Greubel, Nov 23 2021
Sum_{n>=2} (-1)^n/a(n) = log(5)/4 + log(phi)/(2*sqrt(5)) - sqrt(1+2/sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 07 2021
E.g.f.: 1 + ((5*x - 7/2)*exp(x) + (3/2)*exp(-x))/2. - David Lovler, Aug 23 2022