cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047250 Numbers that are congruent to {0, 3, 4, 5} (mod 6).

Original entry on oeis.org

0, 3, 4, 5, 6, 9, 10, 11, 12, 15, 16, 17, 18, 21, 22, 23, 24, 27, 28, 29, 30, 33, 34, 35, 36, 39, 40, 41, 42, 45, 46, 47, 48, 51, 52, 53, 54, 57, 58, 59, 60, 63, 64, 65, 66, 69, 70, 71, 72, 75, 76, 77, 78, 81, 82, 83, 84, 87, 88, 89, 90, 93, 94, 95, 96, 99
Offset: 1

Views

Author

Keywords

Comments

The sequence is the interleaving of A047233 with A047270. - Guenther Schrack, Feb 15 2019

Crossrefs

Complement: A047239.

Programs

  • Magma
    [n : n in [0..150] | n mod 6 in [0, 3, 4, 5]]; // Wesley Ivan Hurt, Jun 02 2016
    
  • Maple
    A047250:=n->(6*n-3+I^(2*n)-(1+I)*I^(-n)-(1-I)*I^n)/4: seq(A047250(n), n=1..100); # Wesley Ivan Hurt, Jun 02 2016
  • Mathematica
    Select[Range[0,100], MemberQ[{0,3,4,5}, Mod[#,6]]&] (* or *) LinearRecurrence[{1,0,0,1,-1}, {0,3,4,5,6}, 60] (* Harvey P. Dale, Apr 01 2013 *)
  • PARI
    my(x='x+O('x^70)); concat([0], Vec(x^2*(3+x+x^2+x^3)/((1+x)*(1+x^2)*(1-x)^2))) \\ G. C. Greubel, Feb 16 2019
    
  • Sage
    a=(x^2*(3+x+x^2+x^3)/((1+x)*(1+x^2)*(1-x)^2)).series(x, 72).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 16 2019

Formula

G.f.: x^2*(3+x+x^2+x^3)/((1+x)*(1+x^2)*(1-x)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 02 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (6*n - 3 + i^(2*n) - (1+i)*i^(-n) - (1-i)*i^n)/4 where i=sqrt(-1).
a(2*k) = A047270(k), a(2*k-1) = A047233(k). (End)
E.g.f.: (2 - sin(x) - cos(x) + (3*x - 2)*sinh(x) + (3*x - 1)*cosh(x))/2. - Ilya Gutkovskiy, Jun 02 2016
From Guenther Schrack, Feb 15 2019: (Start)
a(n) = (6*n - 3 + (-1)^n - 2*(-1)^(n*(n-1)/2))/4.
a(n) = a(n-4) + 6, a(1)=0, a(2)=3, a(3)=4, a(4)=5, for n > 4.
a(-n) = -A047246(n+2). (End)
Sum_{n>=2} (-1)^n/a(n) = 2*log(2)/3 - Pi/(6*sqrt(3)). - Amiram Eldar, Dec 17 2021