A047250 Numbers that are congruent to {0, 3, 4, 5} (mod 6).
0, 3, 4, 5, 6, 9, 10, 11, 12, 15, 16, 17, 18, 21, 22, 23, 24, 27, 28, 29, 30, 33, 34, 35, 36, 39, 40, 41, 42, 45, 46, 47, 48, 51, 52, 53, 54, 57, 58, 59, 60, 63, 64, 65, 66, 69, 70, 71, 72, 75, 76, 77, 78, 81, 82, 83, 84, 87, 88, 89, 90, 93, 94, 95, 96, 99
Offset: 1
Links
- Guenther Schrack, Table of n, a(n) for n = 1..10010
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 6 in [0, 3, 4, 5]]; // Wesley Ivan Hurt, Jun 02 2016
-
Maple
A047250:=n->(6*n-3+I^(2*n)-(1+I)*I^(-n)-(1-I)*I^n)/4: seq(A047250(n), n=1..100); # Wesley Ivan Hurt, Jun 02 2016
-
Mathematica
Select[Range[0,100], MemberQ[{0,3,4,5}, Mod[#,6]]&] (* or *) LinearRecurrence[{1,0,0,1,-1}, {0,3,4,5,6}, 60] (* Harvey P. Dale, Apr 01 2013 *)
-
PARI
my(x='x+O('x^70)); concat([0], Vec(x^2*(3+x+x^2+x^3)/((1+x)*(1+x^2)*(1-x)^2))) \\ G. C. Greubel, Feb 16 2019
-
Sage
a=(x^2*(3+x+x^2+x^3)/((1+x)*(1+x^2)*(1-x)^2)).series(x, 72).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 16 2019
Formula
G.f.: x^2*(3+x+x^2+x^3)/((1+x)*(1+x^2)*(1-x)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 02 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (6*n - 3 + i^(2*n) - (1+i)*i^(-n) - (1-i)*i^n)/4 where i=sqrt(-1).
E.g.f.: (2 - sin(x) - cos(x) + (3*x - 2)*sinh(x) + (3*x - 1)*cosh(x))/2. - Ilya Gutkovskiy, Jun 02 2016
From Guenther Schrack, Feb 15 2019: (Start)
a(n) = (6*n - 3 + (-1)^n - 2*(-1)^(n*(n-1)/2))/4.
a(n) = a(n-4) + 6, a(1)=0, a(2)=3, a(3)=4, a(4)=5, for n > 4.
a(-n) = -A047246(n+2). (End)
Sum_{n>=2} (-1)^n/a(n) = 2*log(2)/3 - Pi/(6*sqrt(3)). - Amiram Eldar, Dec 17 2021
Comments