A047253 Numbers that are congruent to {1, 2, 3, 4, 5} mod 6.
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85, 86
Offset: 1
Links
- Ivan Panchenko, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
Programs
-
Haskell
a047253 n = n + n `div` 5 a047253_list = [1..5] ++ map (+ 6) a047253_list -- Reinhard Zumkeller, Nov 10 2013
-
Mathematica
Select[Table[n,{n,200}],Mod[#,6]!=0&] (* Vladimir Joseph Stephan Orlovsky, Feb 18 2011*)
-
PARI
a(n)= 1+n+n\5
-
PARI
a(n)=n-1+floor((n+4)/5) \\ Benoit Cloitre, Jul 11 2009
Formula
a(n) = 5 + a(n-5).
G.f.: x*(1+x)*(1+x+x^2)*(x^2-x+1) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ).
a(n) = n - 1 + floor((n+4)/5). - Benoit Cloitre, Jul 11 2009
A122841(a(n)) = 0. - Reinhard Zumkeller, Nov 10 2013
Sum_{n>=1} (-1)^(n+1)/a(n) = (15-4*sqrt(3))*Pi/36. - Amiram Eldar, Dec 31 2021
Extensions
Extended by R. J. Mathar, Oct 18 2008
Comments