cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A122841 Greatest k such that 6^k divides n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 13 2006

Keywords

Comments

See A054895 for the partial sums. - Hieronymus Fischer, Jun 08 2012

Crossrefs

Programs

  • Haskell
    a122841 = f 0 where
       f y x = if r > 0 then y else f (y + 1) x'
               where (x', r) = divMod x 6
    -- Reinhard Zumkeller, Nov 10 2013
    
  • Mathematica
    Table[IntegerExponent[n, 6], {n, 1, 100}] (* Amiram Eldar, Sep 14 2020 *)
  • PARI
    a(n) = valuation(n, 6); \\ Michel Marcus, Jan 17 2022

Formula

From Hieronymus Fischer, Jun 03 2012: (Start)
With m = floor(log_6(n)), frac(x) = x-floor(x):
a(n) = Sum_{j=1..m} (1 - ceiling(frac(n/6^j))).
a(n) = m + Sum_{j=1..m} (floor(-frac(n/6^j))).
a(n) = A054895(n) - A054895(n-1).
G.f.: Sum_{j>0} x^6^j/(1-x^6^j). (End)
a(A047253(n)) = 0; a(A008588(n)) > 0; a(A044102(n)) > 1. - Reinhard Zumkeller, Nov 10 2013
6^a(n) = A234959(n), n >= 1. - Wolfdieter Lang, Jun 30 2014
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/5. - Amiram Eldar, Jan 17 2022
a(n) = min(A007814(n), A007949(n)). - Jianing Song, Jul 23 2022

A097325 Period 6: repeat [0, 1, 1, 1, 1, 1].

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Ralf Stephan, Aug 16 2004

Keywords

Comments

a(n) is 0 if 6 divides n, 1 otherwise.

Crossrefs

Characteristic sequence of A047253.
Binary complement of A079979.

Programs

Formula

G.f.: 1/(1-x) - 1/(1-x^6) = Sum_{k>=0} x^k - x^(6*k).
Recurrence: a(n+6) = a(n), a(0) = 0, a(i) = 1, 1 <= i <= 5.
a(n) = (1/4) * (3 - (-1)^n - (-1)^((n+1)/3) - (-1)^((2n+1)/3)).
From Reinhard Zumkeller, Nov 30 2009: (Start)
a(n) = 1 - A079979(n).
a(A047253(n)) = 1, a(A008588(n)) = 0.
A033438(n) = Sum_{k=0..n} a(k)*(n-k). (End)
Dirichlet g.f.: (1 - 1/6^s)*zeta(s). - R. J. Mathar, Feb 19 2011
For the general case: the characteristic function of numbers that are not multiples of m is a(n) = floor((n-1)/m) - floor(n/m) + 1, m, n > 0. - Boris Putievskiy, May 08 2013
a(n) = sign(n mod 6). - Wesley Ivan Hurt, Jun 29 2013
a(n) = ceiling(5n/6) - floor(5n/6). - Wesley Ivan Hurt, Jun 20 2014

Extensions

New name from Omar E. Pol, Oct 21 2013

A248910 Numbers with no zeros in base-6 representation.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 08 2015

Keywords

Comments

Different from A039215, A047253, A184522, A187390, A194386.

Crossrefs

Cf. A007092, A100969 (subsequence).
Zeroless numbers in some other bases <= 10: A000042 (base 2), A032924 (base 3), A023705 (base 4), A255805 (base 8), A255808 (base 9), A052382 (base 10).

Programs

  • Haskell
    a248910 n = a248910_list !! (n-1)
    a248910_list = iterate f 1 where
       f x = 1 + if r < 5 then x else 6 * f x'  where (x', r) = divMod x 6
    
  • Mathematica
    Select[Range[100], DigitCount[#,6, 0] == 0 &] (* Paolo Xausa, Jun 29 2025 *)
  • PARI
    isok(m) = vecmin(digits(m, 6)) > 0; \\ Michel Marcus, Jan 23 2022
    
  • Python
    from sympy import integer_log
    def A248910(n):
        m = integer_log(k:=(n<<2)+1,5)[0]
        return sum((1+(k-5**m)//(5**j<<2)%5)*6**j for j in range(m)) # Chai Wah Wu, Jun 28 2025

A108120 Floor[n*1/Sin[1]], or Beatty sequence for 1/sin(1).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 83, 84, 85
Offset: 1

Views

Author

Zak Seidov, Jun 04 2005

Keywords

Comments

Complement of A108587; not the same as A108586: a(37)=43 <> A108586(37)=44. - Reinhard Zumkeller, Jun 11 2005

Crossrefs

Programs

  • Mathematica
    a[n_]:=Floor[n*1/Sin[1]];Table[a[n], {n, 90}]

Formula

a(n) = floor(n*1/sin(1))

A367455 Numbers not divisible by 6 that are neither squarefree nor prime powers.

Original entry on oeis.org

20, 28, 40, 44, 45, 50, 52, 56, 63, 68, 75, 76, 80, 88, 92, 98, 99, 100, 104, 112, 116, 117, 124, 135, 136, 140, 147, 148, 152, 153, 160, 164, 171, 172, 175, 176, 184, 188, 189, 196, 200, 207, 208, 212, 220, 224, 225, 232, 236, 242, 244, 245, 248, 250, 260, 261
Offset: 1

Views

Author

Michael De Vlieger, Jan 15 2024

Keywords

Comments

A364997 is a proper subset.
The asymptotic density of this sequence is 1/6 - 1/(2*Pi^2). - Amiram Eldar, Jan 20 2024

Crossrefs

Programs

  • Mathematica
    Select[Range[261], And[Nor[SquareFreeQ[#], PrimePowerQ[#]], Mod[#, 6] != 0] &]

Formula

Intersection of A047253 and A126706.
Let p = A119288(k) and q = A053669(k) for k in A126706. Various definitions of this sequence:
{a(n)} = { k : Omega(k) > omega(k) > 1, p > q }.
{a(n)} = { k : Omega(k) > omega(k) > 1, k mod 6 != 0 }.
{a(n)} = { k = mx : x in A367018, rad(m) | x, m > 1. }.

A232100 a(n) = the position of A232099(n) in A055926.

Original entry on oeis.org

41, 123, 205, 287, 369, 451, 533, 615, 697, 779, 861, 943, 1025, 1107, 1189, 1271, 1353, 1435, 1517, 1599, 1681, 1763, 1845, 1927, 2009, 2091, 2173, 2255, 2337, 2419, 2501, 2583, 2665, 2706, 2747, 2829, 2911, 2993, 3075, 3157, 3239, 3321, 3403, 3485, 3567, 3649
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2013

Keywords

Comments

In range n=1..2215, each a(n) is a multiple of 41, with a(2215) = 177079 = 4319*41. In that range, all 2160 odd multiples 1, 3, 5, ..., 4319*41 occur, but only 55 even multiples, with a(34) = 66*41 = 2706 being the first one of them. The multipliers for even terms in that range seems to be given by 66*A047253(1..55) from 66*1 up to 66*A047253(55) = 66*65 = 4290. (Where A047253 gives the numbers not divisible by six).

Crossrefs

Formula

A055926(a(n)) = A232099(n) for all n.

A108611 Excess of Beatty-function of 1/sin(1) over n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16
Offset: 0

Views

Author

Zak Seidov, Jun 13 2005

Keywords

Crossrefs

Formula

a(n) = A108120[n] - n.

A126104 Numbers n not divisible by 6 such that sigma(n) > 3n.

Original entry on oeis.org

40040, 61600, 72800, 80080, 104720, 117040, 123200, 123760, 138320, 141680, 145600, 154000, 160160, 172480, 200200, 209440, 215600, 234080, 246400, 247520, 254800, 261800, 276640, 280280, 283360, 291200, 292600, 308000
Offset: 1

Views

Author

Ant King, Mar 07 2007

Keywords

Crossrefs

Intersection of A047253 and A068403.

Programs

  • Mathematica
    Select[Range[310000], Mod[#, 6] > 1 && DivisorSigma[1, #] > 3# &] (* Amiram Eldar, Dec 03 2019 *)

A261831 a(2*n-1) = 2*n-1; otherwise a(n) is the smallest even number not already present which is obtained from the existing terms by the rules of (3*n+1)-problem.

Original entry on oeis.org

1, 4, 3, 2, 5, 10, 7, 16, 9, 8, 11, 22, 13, 28, 15, 14, 17, 34, 19, 40, 21, 20, 23, 46, 25, 52, 27, 26, 29, 58, 31, 64, 33, 32, 35, 70, 37, 76, 39, 38, 41, 82, 43, 88, 45, 44, 47, 94, 49, 100, 51, 50, 53, 106, 55, 112, 57, 56, 59, 118, 61, 124, 63, 62, 65, 130, 67, 136, 69, 68, 71, 142, 73, 148, 75, 74, 77, 154, 79, 160, 81, 80
Offset: 1

Views

Author

Vladimir Shevelev, Sep 02 2015

Keywords

Comments

By the rules of the (3*n+1)-problem, an even number can appear either by the operation 3*x+1 only when x is an odd number or by the division of a number of the form 4*k by 2.
Using induction as in the proof of the Theorem in A261728, one can prove that if n == 0(mod 6), then a(n) = 2*n-2; if n == 2(mod 6), then a(n) = 2*n; if n == 4(mod 6), then a(n) = n-2.
The sequence is a permutation of the positive integers not divisible by 6 (A047253).

Examples

			Let n=28. Since 28 is of the form 6*k+4 with k=4, then a(28) = 6*4+2 = 26.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := If[OddQ[n], n, Switch[Mod[n, 6], 0, 2n-2, 2, 2n, 4, n-2]]; Array[a, 81] (* Jean-François Alcover, Sep 02 2015, from given formula *)
    LinearRecurrence[{0,0,0,0,0,2,0,0,0,0,0,-1},{1,4,3,2,5,10,7,16,9,8,11,22},90] (* Harvey P. Dale, Feb 24 2025 *)

Formula

a(2*n-1) = 2*n-1, for n>=1.
a(6*k) = 12*k-2, a(6*k+2) = 12*k+4 and a(6*k+4) = 6*k+2, for k>=0.
O.g.f.:(1+x (4+x (3+x (2+x (5+x (10+x (5+x (8+x (3+x (4+x (1+2 x)))))))))))/(-1+x^6)^2.

A367018 Composite squarefree k that are not divisible by 6.

Original entry on oeis.org

10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 70, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 105, 106, 110, 111, 115, 118, 119, 122, 123, 129, 130, 133, 134, 141, 142, 143, 145, 146, 154, 155, 158, 159, 161, 165, 166, 170, 177, 178, 182
Offset: 1

Views

Author

Michael De Vlieger, Jan 15 2024

Keywords

Comments

The asymptotic density of this sequence is 1/(2*Pi^2). - Amiram Eldar, Jan 20 2024

Examples

			70 is in this sequence since it is composite and squarefree but not divisible by 6. It does not appear in A006881 since it is the product of 3 primes.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[180], And[SquareFreeQ[#], CompositeQ[#], Mod[#, 6] != 0] &]

Formula

Intersection of A047253 and A120944 = { k : Omega(k) > omega(k) = 1, k mod 6 != 0 }.
Showing 1-10 of 18 results. Next