cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A080341 Sum of the first n terms that are congruent to 1, 4 or 5 mod 6 (A047259).

Original entry on oeis.org

1, 5, 10, 17, 27, 38, 51, 67, 84, 103, 125, 148, 173, 201, 230, 261, 295, 330, 367, 407, 448, 491, 537, 584, 633, 685, 738, 793, 851, 910, 971, 1035, 1100, 1167, 1237, 1308, 1381, 1457, 1534, 1613, 1695, 1778, 1863, 1951, 2040, 2131, 2225, 2320, 2417
Offset: 1

Views

Author

Christian Mercat (Integer.Sequence(AT)entrelacs.net), Mar 20 2003

Keywords

Comments

Number of edges needed in a sector of a hexagon of size n paved by rhombi coming from triangular/hexagonal lattices.

Crossrefs

Cf. A047259.

Programs

  • Mathematica
    Accumulate[Select[Range[100],MemberQ[{1,4,5},Mod[#,6]]&]] (* Harvey P. Dale, Aug 16 2012 *)

Formula

a(n) = n^2+(n+1)/3 with integer division, that is n mod 3 = 0 : n^2+n/3 n mod 3 = 1 : n^2+(n-1)/3 n mod 3 = 2 : n^2+(n+1)/3.
G.f.: x*(1+3*x+x^2+x^3)/(1-x)^3/(1+x+x^2). [Colin Barker, Feb 12 2012]

A301451 Numbers congruent to {1, 7} mod 9.

Original entry on oeis.org

1, 7, 10, 16, 19, 25, 28, 34, 37, 43, 46, 52, 55, 61, 64, 70, 73, 79, 82, 88, 91, 97, 100, 106, 109, 115, 118, 124, 127, 133, 136, 142, 145, 151, 154, 160, 163, 169, 172, 178, 181, 187, 190, 196, 199, 205, 208, 214, 217, 223, 226, 232, 235, 241, 244, 250, 253, 259, 262, 268
Offset: 1

Views

Author

Bruno Berselli, Mar 21 2018

Keywords

Comments

First bisection of A056991, second bisection of A242660.
The squares of the terms of A174396 are the squares of this sequence.

Crossrefs

Cf. A274406: numbers congruent to {0, 8} mod 9.
Cf. A193910: numbers congruent to {2, 6} mod 9.

Programs

  • GAP
    a := [1,7,10];; for n in [4..60] do a[n] := a[n-1] + a[n-2] - a[n-3]; od; a;
    
  • Magma
    &cat [[9*n+1, 9*n+7]: n in [0..40]];
    
  • Mathematica
    Table[2 (2 n - 1) + (2 n - 3 (1 - (-1)^n))/4, {n, 1, 60}]
    {#+1,#+7}&/@(9*Range[0,30])//Flatten (* or *) LinearRecurrence[{1,1,-1},{1,7,10},60] (* Harvey P. Dale, Nov 08 2020 *)
  • PARI
    Vec(x*(1 + 6*x + 2*x^2) / ((1 - x)^2*(1 + x)) + O(x^60)) \\ Colin Barker, Mar 22 2018
  • Python
    [2*(2*n-1)+(2*n-3*(1-(-1)**n))/4 for n in range(1,70)]
    
  • Sage
    [n for n in (1..300) if n % 9 in (1,7)]
    

Formula

O.g.f.: x*(1 + 6*x + 2*x^2)/((1 + x)*(1 - x)^2).
E.g.f.: (3 + 8*exp(x) - 11*exp(2*x) + 18*x*exp(2*x))*exp(-x)/4.
a(n) = a(n-1) + a(n-2) - a(n-3).
a(n) = 2*(2*n - 1) + (2*n - 3*(1 - (-1)^n))/4. Therefore, for n even a(n) = (9*n - 4)/2, otherwise a(n) = (9*n - 7)/2.
a(2n+1) = A017173(n). a(2n) = A017245(n-1). - R. J. Mathar, Feb 28 2019

A144430 a(n) = 1 + A144429(n).

Original entry on oeis.org

2, 3, 4, 5, 7, 10, 11, 13, 16, 17, 19, 22, 23, 25, 28, 29, 31, 34, 35, 37, 40, 41, 43, 46, 47, 49, 52, 53, 55, 58, 59, 61, 64, 65, 67, 70, 71, 73, 76, 77, 79, 82, 83, 85, 88, 89, 91, 94, 95, 97, 100, 101, 103, 106, 107, 109, 112, 113, 115, 118, 119, 121, 124, 125, 127, 130
Offset: 1

Views

Author

Milton L. Brown (miltbrown(AT)earthlink.net), Oct 13 2008

Keywords

Comments

If you cross out every 3rd term starting at 4 and cross out multiples of 5, the reduced sequence is 2, 3, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, ... which starts with 14 primes.
Essentially the same as A047259. - Georg Fischer, Oct 07 2018

Crossrefs

Cf. A144429.

Programs

  • GAP
    a:=[2,3,4,5,7];; for n in [6..70] do a[n]:=a[n-3]+6; od; a; # Muniru A Asiru, Oct 07 2018

Formula

a(n) = a(n-3) + 6, n > 5.

Extensions

Edited and extended by R. J. Mathar, Oct 15 2008
Showing 1-3 of 3 results.