cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A047259 Numbers that are congruent to {1, 4, 5} mod 6.

Original entry on oeis.org

1, 4, 5, 7, 10, 11, 13, 16, 17, 19, 22, 23, 25, 28, 29, 31, 34, 35, 37, 40, 41, 43, 46, 47, 49, 52, 53, 55, 58, 59, 61, 64, 65, 67, 70, 71, 73, 76, 77, 79, 82, 83, 85, 88, 89, 91, 94, 95, 97, 100, 101, 103, 106, 107, 109, 112, 113, 115, 118, 119, 121, 124
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A144430 (essentially the same), A010882 (first differences), A080341 (partial sums).

Programs

  • Magma
    [n : n in [0..150] | n mod 6 in [1, 4, 5]]; // Wesley Ivan Hurt, Jun 11 2016
  • Maple
    A047259:=n->(6*n-2-cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/3: seq(A047259(n), n=1..100); # Wesley Ivan Hurt, Jun 11 2016
  • Mathematica
    Select[Range[200], MemberQ[{1,4,5}, Mod[#,6]]&] (* or *) LinearRecurrence[ {1,0,1,-1}, {1,4,5,7}, 100] (* Harvey P. Dale, Feb 16 2015 *)
    LinearRecurrence[{1, 0, 1, -1}, {1, 4, 5, 7}, 100] (* Vincenzo Librandi, Jun 14 2016 *)

Formula

From R. J. Mathar, Feb 21 2009: (Start)
G.f.: x*(1+3*x+x^2+x^3)/((1-x)^2*(1+x+x^2)).
a(n) = a(n-3) + 6. (End)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4, with a(1)=1, a(2)=4, a(3)=5, a(4)=7. - Harvey P. Dale, Feb 16 2015
From Wesley Ivan Hurt, Jun 11 2016: (Start)
a(n) = (6*n-2-cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/3.
a(3k) = 6k-1, a(3k-1) = 6k-2, a(3k-2) = 6k-5. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (6-sqrt(3))*Pi/18 + log(2)/6. - Amiram Eldar, Dec 16 2021
Showing 1-1 of 1 results.