cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047267 Numbers that are congruent to {0, 2, 5} mod 6.

Original entry on oeis.org

0, 2, 5, 6, 8, 11, 12, 14, 17, 18, 20, 23, 24, 26, 29, 30, 32, 35, 36, 38, 41, 42, 44, 47, 48, 50, 53, 54, 56, 59, 60, 62, 65, 66, 68, 71, 72, 74, 77, 78, 80, 83, 84, 86, 89, 90, 92, 95, 96, 98, 101, 102, 104, 107, 108, 110, 113, 114, 116, 119, 120, 122, 125
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A011655. [Gary Detlefs, Mar 19 2010]

Programs

  • Magma
    [n : n in [0..150] | n mod 6 in [0, 2, 5]]; // Wesley Ivan Hurt, Jun 13 2016
  • Maple
    seq(3*n-3*floor(n/3)-(n^2 mod 3), n=0..54); # Gary Detlefs, Mar 19 2010
  • Mathematica
    Select[Range[0,110], MemberQ[{0,2,5}, Mod[#,6]]&] (* or *) LinearRecurrence[{1,0,1,-1}, {0,2,5,6}, 60] (* Harvey P. Dale, Aug 31 2015 *)

Formula

a(n) = 3*n-3*floor(n/3)-(n^2 mod 3), with offset 0. - Gary Detlefs, Mar 19 2010
G.f.: x^2*(x+2)*(1+x) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (6*n-5+2*cos(2*n*Pi/3))/3.
a(3k) = 6k-1, a(3k-1) = 6k-4, a(3k-2) = 6k-6. (End)
E.g.f.: (3 + (6*x - 5)*exp(x) + 2*cos(sqrt(3)*x/2)*(cosh(x/2) - sinh(x/2)))/3. - Ilya Gutkovskiy, Jun 14 2016
Sum_{n>=2} (-1)^n/a(n) = log(2)/3 + log(2+sqrt(3))/(2*sqrt(3)) - (3-sqrt(3))*Pi/18. - Amiram Eldar, Dec 14 2021