A047267 Numbers that are congruent to {0, 2, 5} mod 6.
0, 2, 5, 6, 8, 11, 12, 14, 17, 18, 20, 23, 24, 26, 29, 30, 32, 35, 36, 38, 41, 42, 44, 47, 48, 50, 53, 54, 56, 59, 60, 62, 65, 66, 68, 71, 72, 74, 77, 78, 80, 83, 84, 86, 89, 90, 92, 95, 96, 98, 101, 102, 104, 107, 108, 110, 113, 114, 116, 119, 120, 122, 125
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Crossrefs
Cf. A011655. [Gary Detlefs, Mar 19 2010]
Programs
-
Magma
[n : n in [0..150] | n mod 6 in [0, 2, 5]]; // Wesley Ivan Hurt, Jun 13 2016
-
Maple
seq(3*n-3*floor(n/3)-(n^2 mod 3), n=0..54); # Gary Detlefs, Mar 19 2010
-
Mathematica
Select[Range[0,110], MemberQ[{0,2,5}, Mod[#,6]]&] (* or *) LinearRecurrence[{1,0,1,-1}, {0,2,5,6}, 60] (* Harvey P. Dale, Aug 31 2015 *)
Formula
a(n) = 3*n-3*floor(n/3)-(n^2 mod 3), with offset 0. - Gary Detlefs, Mar 19 2010
G.f.: x^2*(x+2)*(1+x) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (6*n-5+2*cos(2*n*Pi/3))/3.
a(3k) = 6k-1, a(3k-1) = 6k-4, a(3k-2) = 6k-6. (End)
E.g.f.: (3 + (6*x - 5)*exp(x) + 2*cos(sqrt(3)*x/2)*(cosh(x/2) - sinh(x/2)))/3. - Ilya Gutkovskiy, Jun 14 2016
Sum_{n>=2} (-1)^n/a(n) = log(2)/3 + log(2+sqrt(3))/(2*sqrt(3)) - (3-sqrt(3))*Pi/18. - Amiram Eldar, Dec 14 2021