A047288 Numbers that are congruent to {4, 6} mod 7.
4, 6, 11, 13, 18, 20, 25, 27, 32, 34, 39, 41, 46, 48, 53, 55, 60, 62, 67, 69, 74, 76, 81, 83, 88, 90, 95, 97, 102, 104, 109, 111, 116, 118, 123, 125, 130, 132, 137, 139, 144, 146, 151, 153, 158, 160, 165, 167, 172
Offset: 1
Links
- David Lovler, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Mathematica
LinearRecurrence[{1,1,-1},{4,6,11},50] (* Harvey P. Dale, Jan 18 2013 *)
-
PARI
a(n) = (-1 - 3*(-1)^n + 14*n)/4 \\ David Lovler, Sep 15 2022
Formula
a(n) = 7*n - a(n-1) - 4 with n > 1, a(1)=4. - Vincenzo Librandi, Aug 05 2010
From Colin Barker, Mar 13 2012: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3).
G.f.: x*(4 + 2*x + x^2)/((1-x)^2*(1+x)). (End)
a(n) = (-1 - 3*(-1)^n + 14*n)/4. - Colin Barker, May 14 2012
a(n) = floor(7*n/2) - (-1)^n. - Wesley Ivan Hurt, Sep 12 2017
E.g.f.: 1 + ((14*x - 1)*exp(x) - 3*exp(-x))/4. - David Lovler, Sep 15 2022