A047291 Numbers that are congruent to {0, 1, 4, 6} mod 7.
0, 1, 4, 6, 7, 8, 11, 13, 14, 15, 18, 20, 21, 22, 25, 27, 28, 29, 32, 34, 35, 36, 39, 41, 42, 43, 46, 48, 49, 50, 53, 55, 56, 57, 60, 62, 63, 64, 67, 69, 70, 71, 74, 76, 77, 78, 81, 83, 84, 85, 88, 90, 91, 92, 95, 97, 98, 99, 102, 104, 105, 106, 109, 111
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
I:=[0, 1, 4, 6, 7]; [n le 5 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..70]]; // Vincenzo Librandi, Apr 26 2012
-
Maple
A047291:=n->(-13-(-1)^n+(3-I)*(-I)^n+(3+I)*I^n+14*n)/8: seq(A047291(n), n=1..100); # Wesley Ivan Hurt, Jun 01 2016
-
Mathematica
Select[Range[0,120], MemberQ[{0,1,4,6}, Mod[#,7]]&] (* Vincenzo Librandi, Apr 26 2012 *) LinearRecurrence[{1,0,0,1,-1},{0,1,4,6,7},100] (* G. C. Greubel, Jun 01 2016 *)
-
PARI
x='x+O('x^100); concat(0, Vec(x^2*(1+3*x+2*x^2+x^3)/((1-x)^2*(1+x)*(1+x^2)))) \\ Altug Alkan, Dec 24 2015
Formula
From Colin Barker, Mar 13 2012: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
G.f.: x^2*(1 + 3*x + 2*x^2 + x^3)/((1-x)^2*(1+x)*(1+x^2)). (End)
a(n) = (-13 - (-1)^n + (3-i)*(-i)^n + (3+i)*i^n + 14*n)/8 where i=sqrt(-1). - Colin Barker, May 14 2012
E.g.f.: (4 - sin(x) + 3*cos(x) + (7*x - 6)*sinh(x) + 7*(x - 1)*cosh(x))/4. - Ilya Gutkovskiy, Jun 01 2016