A047293 Numbers that are congruent to {0, 2, 4, 6} mod 7.
0, 2, 4, 6, 7, 9, 11, 13, 14, 16, 18, 20, 21, 23, 25, 27, 28, 30, 32, 34, 35, 37, 39, 41, 42, 44, 46, 48, 49, 51, 53, 55, 56, 58, 60, 62, 63, 65, 67, 69, 70, 72, 74, 76, 77, 79, 81, 83, 84, 86, 88, 90, 91, 93, 95, 97, 98, 100, 102, 104, 105, 107, 109, 111
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
I:=[0, 2, 4, 6, 7]; [n le 5 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..70]]; // Vincenzo Librandi, Apr 26 2012
-
Maple
A047293:=n->2*n-2-floor((n-1)/4): seq(A047293(n), n=1..100); # Wesley Ivan Hurt, May 21 2016
-
Mathematica
Select[Range[0,100],MemberQ[{0,2,4,6},Mod[#,7]]&] (* Vincenzo Librandi, Apr 26 2012 *) LinearRecurrence[{1,0,0,1,-1},{0,2,4,6,7},80] (* Harvey P. Dale, Jun 21 2019 *)
-
PARI
A047293(n)=n*7\4-1 \\ M. F. Hasler, Apr 27 2012
Formula
a(n) = floor(ceiling((7n + 2)/2)/2).
a(n) = 2n-2-floor((n-1)/4). - Gary Detlefs, Mar 27 2010
From Colin Barker, Mar 13 2012: (Start)
a(n) = a(n-1)+a(n-4)-a(n-5) for n>5.
G.f.: x^2*(2+2*x+2*x^2+x^3)/((1-x)^2*(1+x)*(1+x^2)). (End)
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = (14n-11+i^(2n)+(1-i)*i^(-n)+(1+i)*i^n)/8 where i=sqrt(-1).