A047294 Numbers that are congruent to {1, 2, 4, 6} mod 7.
1, 2, 4, 6, 8, 9, 11, 13, 15, 16, 18, 20, 22, 23, 25, 27, 29, 30, 32, 34, 36, 37, 39, 41, 43, 44, 46, 48, 50, 51, 53, 55, 57, 58, 60, 62, 64, 65, 67, 69, 71, 72, 74, 76, 78, 79, 81, 83, 85, 86, 88, 90, 92, 93, 95, 97, 99, 100, 102, 104, 106, 107, 109, 111
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
I:=[1, 2, 4, 6, 8]; [n le 5 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..70]]; // Vincenzo Librandi, Apr 27 2012
-
Maple
A047294:=n->ceil(floor((7*n-5)/2)/2): seq(A047294(n), n=1..100); # Wesley Ivan Hurt, Jun 01 2016
-
Mathematica
Select[Range[0,100], MemberQ[{1,2,4,6}, Mod[#,7]]&] (* Vincenzo Librandi, Apr 27 2012 *) LinearRecurrence[{1,0,0,1,-1},{1,2,4,6,8},100] (* G. C. Greubel, Jun 01 2016 *)
-
PARI
x='x+O('x^100); Vec(x*(1+x+2*x^2+2*x^3+x^4)/((1-x)^2*(1+x)*(1+x^2))) \\ Altug Alkan, Dec 24 2015
Formula
a(n) = ceiling(floor((7*n - 5)/2)/2).
From Colin Barker, Mar 14 2012: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
G.f.: x*(1 + x + 2*x^2 + 2*x^3 + x^4)/((1-x)^2*(1+x)*(1+x^2)). (End)
a(n) = (-9 -(-1)^n + (1+i)*(-i)^n + (1-i)*i^n + 14*n)/8 where i=sqrt(-1). - Colin Barker, May 14 2012
E.g.f.: (4 + sin(x) + cos(x) + (7*x - 4)*sinh(x) + (7*x - 5)*cosh(x))/4. - Ilya Gutkovskiy, Jun 01 2016