A047298 Numbers that are congruent to {1, 3, 4, 6} mod 7.
1, 3, 4, 6, 8, 10, 11, 13, 15, 17, 18, 20, 22, 24, 25, 27, 29, 31, 32, 34, 36, 38, 39, 41, 43, 45, 46, 48, 50, 52, 53, 55, 57, 59, 60, 62, 64, 66, 67, 69, 71, 73, 74, 76, 78, 80, 81, 83, 85, 87, 88, 90, 92, 94, 95, 97, 99, 101, 102, 104, 106, 108, 109, 111
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 7 in [1, 3, 4, 6]]; // Wesley Ivan Hurt, May 22 2016
-
Maple
A047298:=n->I^(-n)*(I-1-7*I^n+14*n*I^n-(1+I)*I^(2*n)+I^(-n))/8: seq(A047298(n), n=1..100); # Wesley Ivan Hurt, May 22 2016
-
Mathematica
Table[I^(-n)*(I-1-7I^n+14n*I^n-(1+I)*I^(2n)+I^(-n))/8, {n, 80}] (* Wesley Ivan Hurt, May 22 2016 *) LinearRecurrence[{1, 0, 0, 1, -1}, {1, 3, 4, 6, 8}, 80] (* Vincenzo Librandi, May 24 2016 *)
Formula
a(n) = ceiling(ceiling((7n + 2)/2)/2).
G.f.: x*(1+2*x+x^2+2*x^3+x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, May 22 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = i^(-n)*(i-1-7*i^n+14*n*i^n-(1+i)*i^(2n)+i^(-n))/8 where i=sqrt(-1).
E.g.f.: (4 + sin(x) - cos(x) + (7*x - 4)*sinh(x) + (7*x - 3)*cosh(x))/4. - Ilya Gutkovskiy, May 23 2016
Extensions
More terms from Wesley Ivan Hurt, May 22 2016