A047303 Numbers that are congruent to {0, 1, 2, 3, 4, 6} mod 7.
0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 76
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1).
Crossrefs
Cf. A017041 (7n+5).
Programs
-
Magma
[n: n in [0..100] | n mod 7 in [0..4] cat [6]]; // Vincenzo Librandi, Sep 08 2015
-
Maple
A047303:=n->n+1+floor((n-2)/6)-ceil((n-1)/6)+floor((n-1)/6)-ceil(n/6)+floor(n/6): seq(A047303(n), n=1..100); # Wesley Ivan Hurt, Sep 07 2015
-
Mathematica
Select[Range[0, 100], MemberQ[{0, 1, 2, 3, 4, 6}, Mod[#, 7]] &] (* Vincenzo Librandi, Sep 08 2015 *) LinearRecurrence[{1,0,0,0,0,1,-1},{0,1,2,3,4,6,7},80] (* Harvey P. Dale, Sep 24 2016 *)
Formula
G.f.: x^2*(1+x+x^2+x^3+2*x^4+x^5) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Sep 07 2015: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
a(n) = n + 1 + floor((n-2)/6) - ceiling((n-1)/6) + floor((n-1)/6) - ceiling(n/6) + floor(n/6). (End)
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = (42*n - 51 + 3*cos(n*Pi) + 4*sqrt(3)*cos((1-4*n)*Pi/6) + 12*sin((1+2*n)*Pi/6))/36.
a(6k) = 7k-1, a(6k-1) = 7k-3, a(6k-2) = 7k-4, a(6k-3) = 7k-5, a(6k-4) = 7k-6, a(6k-5) = 7k-7. (End)
Extensions
More terms from Vincenzo Librandi, Sep 08 2015
Comments