cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047306 Numbers that are congruent to {0, 2, 3, 4, 5, 6} mod 7.

Original entry on oeis.org

0, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Keywords

Comments

Complement of A016993. - Michel Marcus, Sep 10 2015

Crossrefs

Cf. A016993.

Programs

  • Magma
    [n: n in [0..100] | n mod 7 in [0] cat [2..6]]; // Vincenzo Librandi, Oct 22 2014
  • Maple
    A047306:=n->n+floor((n-2)/6): seq(A047306(n), n=1..100); # Wesley Ivan Hurt, Sep 10 2015
  • Mathematica
    Select[Range[0, 100], MemberQ[{0, 2, 3, 4, 5, 6}, Mod[#, 7]] &] (* Vincenzo Librandi, Oct 22 2014 *)
    LinearRecurrence[{1,0,0,0,0,1,-1},{0,2,3,4,5,6,7},70] (* Harvey P. Dale, May 28 2018 *)
  • PARI
    concat(0, Vec(x^2*(2+x+x^2+x^3+x^4+x^5)/((1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2) + O(x^30))) \\ Michel Marcus, Oct 22 2014
    

Formula

G.f.: x^2*(2+x+x^2+x^3+x^4+x^5) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Sep 10 2015: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
a(n) = n + floor((n-2)/6). (End)
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = (42*n-27+3*cos(n*Pi)-12*cos(n*Pi/3)-4*sqrt(3)*sin(2*n*Pi/3))/36.
a(6k) = 7k-1, a(6k-1) = 7k-2, a(6k-2) = 7k-3, a(6k-3) = 7k-4, a(6k-4) = 7k-5, a(6k-5) = 7k-7. (End)

Extensions

More terms from Michel Marcus, Oct 22 2014