A047310 Numbers that are congruent to {0, 1, 3, 4, 5, 6} mod 7.
0, 1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1)
Crossrefs
Cf. A017005 (7n+2).
Programs
-
Magma
[n+Floor((n-3)/6): n in [1..100]]; // Wesley Ivan Hurt, Sep 08 2015
-
Magma
[n: n in [0..100] | n mod 7 in [0,1,3,4,5,6]]; // Vincenzo Librandi, Sep 10 2015
-
Maple
A047310:=n->n+floor((n-3)/6): seq(A047310(n), n=1..100); # Wesley Ivan Hurt, Sep 08 2015
-
Mathematica
Table[n+Floor[(n-3)/6], {n, 100}] (* Wesley Ivan Hurt, Sep 08 2015 *) LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 1, 3, 4, 5, 6, 7}, 70] (* Vincenzo Librandi, Sep 10 2015 *) Select[Range[0,100],MemberQ[{0,1,3,4,5,6},Mod[#,7]]&] (* Harvey P. Dale, Dec 02 2024 *)
Formula
G.f.: x^2*(1+2*x+x^2+x^3+x^4+x^5) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Sep 08 2015: (Start)
a(n) = a(n-1)+a(n-6)-a(n-7) for n>7.
a(n) = n + floor((n-3)/6). (End)
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = (42*n-33-3*cos(n*Pi)+4*sqrt(3)*cos((1-4*n)*Pi/6)-12*sin((1+2*n)*Pi/6))/36.
a(6k) = 7k-1, a(6k-1) = 7k-2, a(6k-2) = 7k-3, a(6k-3) = 7k-4, a(6k-4) = 7k-6, a(6k-5) = 7k-7. (End)
Extensions
More terms from Vincenzo Librandi, Sep 10 2015
Comments