A047318 Numbers that are congruent to {0, 1, 2, 4, 5, 6} mod 7.
0, 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 81, 82, 83
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1).
Crossrefs
Cf. A017017.
Programs
-
Magma
[n+Floor((n-4)/6) : n in [1..100]]; // Wesley Ivan Hurt, Sep 10 2015
-
Magma
[n : n in [0..140] | n mod 7 in [0, 1, 2, 4, 5, 6]]; // Vincenzo Librandi, Sep 11 2015
-
Maple
for n from 0 to 200 do if n mod 7 <> 3 then printf(`%d,`,n) fi: od: A047318:=n->n+floor((n-4)/6): seq(A047318(n), n=1..100); # Wesley Ivan Hurt, Sep 10 2015
-
Mathematica
Table[n+Floor[(n-4)/6], {n,100}] (* Wesley Ivan Hurt, Sep 10 2015 *) LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 1, 2, 4, 5, 6, 7}, 100] (* Vincenzo Librandi, Sep 11 2015 *) DeleteCases[Range[0,100],?(Mod[#,7]==3&)] (* _Harvey P. Dale, May 07 2016 *)
Formula
G.f.: x^2*(1+x+2*x^2+x^3+x^4+x^5) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Dec 03 2011
From Wesley Ivan Hurt, Sep 10 2015: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
a(n) = n + floor((n-4)/6). (End)
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = (42*n-39+3*cos(n*Pi)-4*sqrt(3)*cos((1+4*n)*Pi/6)+12*sin((1-2*n)*Pi/6))/36.
a(6k) = 7k-1, a(6k-1) = 7k-2, a(6k-2) = 7k-3, a(6k-3) = 7k-5, a(6k-4) = 7k-6, a(6k-5) = 7k-7. (End)
Extensions
More terms from James Sellers, Feb 19 2001
Comments