cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047354 Numbers that are congruent to {0, 1, 2} mod 7.

Original entry on oeis.org

0, 1, 2, 7, 8, 9, 14, 15, 16, 21, 22, 23, 28, 29, 30, 35, 36, 37, 42, 43, 44, 49, 50, 51, 56, 57, 58, 63, 64, 65, 70, 71, 72, 77, 78, 79, 84, 85, 86, 91, 92, 93, 98, 99, 100, 105, 106, 107, 112, 113, 114, 119, 120, 121, 126, 127, 128, 133, 134, 135, 140, 141
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A030341.
Cf. similar sequences with formula n+i*floor(n/3) listed in A281899.

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [0..2]]; // Wesley Ivan Hurt, Jun 08 2016
  • Maple
    seq(7*floor(n/3)+(n mod 3), n=0..60); # Gary Detlefs, Mar 09 2010
  • Mathematica
    Flatten[{#,#+1,#+2}&/@(7Range[0,20])]  (* Harvey P. Dale, Mar 05 2011 *)

Formula

a(n) = 7*floor(n/3)+(n mod 3), with offset 0 and a(0)=0. - Gary Detlefs, Mar 09 2010
From R. J. Mathar, Mar 29 2010: (Start)
G.f.: x^2*(1+x+5*x^2)/((1+x+x^2) * (x-1)^2).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. (End)
a(n+1) = Sum_{k>=0} A030341(n,k)*b(k) with b(0)=1 and b(k)=7*3^(k-1) for k>0. - Philippe Deléham, Oct 24 2011
From Wesley Ivan Hurt, Jun 08 2016: (Start)
a(n) = (21*n-33-12*cos(2*n*Pi/3)+4*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-5, a(3k-1) = 7k-6, a(3k-2) = 7k-7. (End)
a(n) = n + 4*floor((n-1)/3) - 1. - Bruno Berselli, Feb 06 2017