A047372 Numbers that are congruent to {1, 2, 3, 5} mod 7.
1, 2, 3, 5, 8, 9, 10, 12, 15, 16, 17, 19, 22, 23, 24, 26, 29, 30, 31, 33, 36, 37, 38, 40, 43, 44, 45, 47, 50, 51, 52, 54, 57, 58, 59, 61, 64, 65, 66, 68, 71, 72, 73, 75, 78, 79, 80, 82, 85, 86, 87, 89, 92, 93, 94, 96, 99, 100, 101, 103, 106, 107, 108, 110
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 7 in [1, 2, 3, 5]]; // Wesley Ivan Hurt, Jun 04 2016
-
Maple
A047372:=n->(14*n+(3*I-1)*(-I)^n-(3*I+1)*I^n-(-1)^n-13)/8: seq(A047372(n), n=1..100); # Wesley Ivan Hurt, Jun 04 2016
-
Mathematica
Flatten[7Range[0,12]+n/.n->{1,2,3,5}] (* Harvey P. Dale, Dec 13 2010 *)
Formula
From Bruno Berselli, Dec 01 2010: (Start)
G.f.: x*(1+x+x^2+2*x^3+2*x^4) / ((1-x)^2*(1+x+x^2+x^3)).
a(n) = (14*n+(3*i-1)*(-i)^n-(3*i+1)*i^n-(-1)^n-13)/8, i=sqrt(-1). (End)
From Wesley Ivan Hurt, Jun 04 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
E.g.f.: (8 + 3*sin(x) - cos(x) + (7*x - 6)*sinh(x) + 7*(x - 1)*cosh(x))/4. - Ilya Gutkovskiy, Jun 04 2016