cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047388 Numbers that are congruent to {0, 1, 2, 5} mod 7.

Original entry on oeis.org

0, 1, 2, 5, 7, 8, 9, 12, 14, 15, 16, 19, 21, 22, 23, 26, 28, 29, 30, 33, 35, 36, 37, 40, 42, 43, 44, 47, 49, 50, 51, 54, 56, 57, 58, 61, 63, 64, 65, 68, 70, 71, 72, 75, 77, 78, 79, 82, 84, 85, 86, 89, 91, 92, 93, 96, 98, 99, 100, 103, 105, 106, 107, 110, 112
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0, 1, 2, 5, 7]; [n le 5 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..70]]; // Vincenzo Librandi, May 15 2012
    
  • Maple
    A047388:=n->(-19+I^(2*n)+(1+3*I)*(-I)^n+(1-3*I)*I^n+14*n)/8: seq(A047388(n), n=1..100); # Wesley Ivan Hurt, Jun 01 2016
  • Mathematica
    Select[Range[0,300], MemberQ[{0,1,2,5}, Mod[#,7]]&] (* Vincenzo Librandi, May 15 2012 *)
    LinearRecurrence[{1,0,0,1,-1},{0,1,2,5,7},80] (* Harvey P. Dale, Jan 10 2023 *)
  • PARI
    x='x+O('x^100); concat(0, Vec(x^2*(1+x+3*x^2+2*x^3)/((1-x)^2*(1+x)*(1+x^2)))) \\ Altug Alkan, Jun 02 2016

Formula

G.f.: x^2*(1+x+3*x^2+2*x^3)/((1-x)^2*(1+x)*(1+x^2)). - Colin Barker, May 13 2012
a(n) = (-19+(-1)^n+(1+3*i)*(-i)^n+(1-3*i)*i^n+14*n)/8 where i=sqrt(-1). - Colin Barker, May 14 2012
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Vincenzo Librandi, May 16 2012
a(2k) = A047383(k), a(2k-1) = A047352(k). - Wesley Ivan Hurt, Jun 01 2016