cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047399 Numbers that are congruent to {0, 3, 6} mod 8.

Original entry on oeis.org

0, 3, 6, 8, 11, 14, 16, 19, 22, 24, 27, 30, 32, 35, 38, 40, 43, 46, 48, 51, 54, 56, 59, 62, 64, 67, 70, 72, 75, 78, 80, 83, 86, 88, 91, 94, 96, 99, 102, 104, 107, 110, 112, 115, 118, 120, 123, 126, 128, 131, 134, 136, 139, 142, 144, 147, 150, 152, 155, 158
Offset: 1

Views

Author

Keywords

Programs

  • Magma
    [Floor((8*n-6)/3): n in [1..60]]; // Vincenzo Librandi, Jul 11 2011
  • Maple
    seq(floor((8*n-6)/3), n=1..52); # Gary Detlefs, Mar 07 2010
  • Mathematica
    f[n_] := 3 n - Floor[n/3]; Array[f, 52, 0] (* Or *)
    Cases[ Range[0, 136], n_ /; MatchQ[ Mod[n, 8], 0 | 3 | 6]] (* Robert G. Wilson v, Jul 10 2011 *)

Formula

a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = floor((8*n-6)/3). [Gary Detlefs, Mar 07 2010]
a(n) = 3*n-floor(n/3). [Gary Detlefs, Jul 09 2011]
G.f. x^2*(3+3*x+2*x^2) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = (24*n-21+3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-2, a(3k-1) = 8k-5, a(3k-2) = 8k-8. (End)