cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A143976 Rectangular array R by antidiagonals: label each unit square in the first quadrant lattice by its northeast vertex (x,y) and mark squares having x + y == 1 (mod 3); then R(m,n) is the number of UNmarked squares in the rectangle [0,m] X [0,n].

Original entry on oeis.org

1, 2, 2, 2, 3, 2, 3, 4, 4, 3, 4, 6, 6, 6, 4, 4, 7, 8, 8, 7, 4, 5, 8, 10, 11, 10, 8, 5, 6, 10, 12, 14, 14, 12, 10, 6, 6, 11, 14, 16, 17, 16, 14, 11, 6, 7, 12, 16, 19, 20, 20, 19, 16, 12, 7, 8, 14, 18, 22, 24, 24, 24, 22, 18, 14, 8, 8, 15, 20, 24, 27, 28, 28, 27, 24, 20, 15, 8
Offset: 1

Views

Author

Clark Kimberling, Sep 06 2008

Keywords

Comments

Rows numbered 3,6,9,12,15,... are, except for initial terms, multiples of (1,2,3,4,5,6,7,...) = A000027.

Examples

			Northwest corner:
  1  2  2  3  4  4  5
  2  3  4  6  7  8 10
  2  4  6  8 10 12 14
  3  6  8 11 14 16 18
  4  7 10 14 17 20 24
See A143974.
		

Crossrefs

Rows: A004523, A004772, A005843, A047399, et al.
Main diagonal: A071619.

Programs

  • Mathematica
    T[m_,n_]:=m*n-Floor[m*n/3]; Flatten[Table[T[n-k+1,k],{n,12},{k,n}]] (* Stefano Spezia, Oct 25 2022 *)

Formula

R(m,n) = m*n - floor(m*n/3).

A232692 E.g.f. satisfies: A(x) = exp( 1/A(x)^3 * Integral A(x)^8 dx ).

Original entry on oeis.org

1, 1, 3, 24, 213, 3096, 46071, 967608, 20251809, 555747048, 15004870731, 508165972056, 16810393586733, 677183788645704, 26523956467895103, 1238567261126084856, 56056407696184372281, 2976966230117448265128, 152872356339113679491859, 9098430770913969095416728
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2013

Keywords

Comments

Compare e.g.f. to: B(x) = exp( 1/B(x)^3 * Integral B(x)^3 dx ) where B(y) = Bessel polynomial y_n(-3) (cf. A065923).
Note that G(x) = exp(1/G(x)^3 * Integral G(x)^7 dx) has negative coefficients.
CONJECTURE:
Given G(x,n,k) = G such that G = exp( 1/G^n * Integral G^k dx ) then G(x,n,k) consists solely of positive coefficients when k >= A047399(n) where A047399 lists numbers that are congruent to {0,3,6} mod 8.

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 24*x^3/3! + 213*x^4/4! + 3096*x^5/5! +...
Related expansions:
log(A(x)) = x + 2*x^2/2! + 17*x^3/3! + 120*x^4/4! + 1905*x^5/5! + 23640*x^6/6! +...
Integral A(x)^8 dx = x + 8*x^2/2! + 80*x^3/3! + 1032*x^4/4! + 16320*x^5/5! +...
1/A(x)^3 = 1 - 3*x + 3*x^2/2! - 24*x^3/3! + 117*x^4/4! - 2088*x^5/5! +...
		

Crossrefs

Programs

  • Maple
    seq(n! * coeff(series((3*LambertW(-1, (25*x-8)/3*exp(-8/3))/(25*x-8))^(1/5), x, n+1), x, n), n=0..20) # Vaclav Kotesovec, Jan 05 2014
  • Mathematica
    m = 20; A[] = 1; Do[A[x] = Exp[1/A[x]^3 Integrate[A[x]^8 + O[x]^m, x]] + O[x]^m // Normal, {m}]; CoefficientList[A[x], x] Range[0, m-1]! (* Jean-François Alcover, Nov 03 2019 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(1/A^3*intformal(A^8+x*O(x^n))));n!*polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

E.g.f.: (3*LambertW(-1, (25*x-8)/3*exp(-8/3))/(25*x-8))^(1/5). - Vaclav Kotesovec, Jan 05 2014

A236535 a(n)*Pi is the total length of irregular spiral (center points: 2, 3, 1; pattern 1) after n rotations.

Original entry on oeis.org

2, 5, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 34, 37, 40, 42, 45, 48, 50, 53, 56, 58, 61, 64, 66, 69, 72, 74, 77, 80, 82, 85, 88, 90, 93, 96, 98, 101, 104, 106, 109, 112, 114, 117, 120, 122, 125, 128, 130, 133, 136, 138, 141, 144, 146, 149, 152, 154, 157, 160, 162, 165, 168, 170, 173, 176, 178, 181, 184, 186, 189
Offset: 1

Views

Author

Kival Ngaokrajang, Jan 28 2014

Keywords

Comments

Let points 2, 3, & 1 be placed on a straight line at intervals of 1 unit. At point 1 make a half unit circle then at point 2 make another half circle; by selecting radius point on the left hand side of point 1 (pattern 1); at point 3 make another half circle and maintain continuity of circumferences. Continue using this procedure at point 1, 2, 3, ... and so on.
Conjecture: All forms of 3 center points are non-expanded loops.
There are other sets of center points that give the same sequence, e.g.: [2,3,1,4]; [3,2,4,1]; [3,2,4,1,5]; [2,3,1,4,5,7,6]; [2,3,1,7,4,6,5]; [3,4,2,5,1,6,7]; [4,3,5,6,2,7,1]; [4,5,3,2,1,6,7]; [5,4,6,3,2,7,1].
Also, there are some similar patterns that give difference sequences, e.g.:
A047622: [1,2,7,3,4,6,5]; [1,2,7,6,3,5,4]...
A047399: [1,2,7,3,6,4,5]; [1,2,7,6,5,3,4]...
A047395: [2,3,1,4 7,5,6]; [2,3,1,7,6,4,5]...
A047464: [4,5,3,6,2,7,1]; [1,8,2,7,3,6,4,5];
[9,1,8,2,7,3,6,4,5].
See illustration in links.
Appears to be basically a duplicate of A047618. - R. J. Mathar, Feb 03 2014

Crossrefs

Cf. A014105 (2 center points); A234902, A234903, A234904 (3 center points); A235088, A235089 (4 center points); A236326, A236327 (5 center points).

Formula

Conjecture from Colin Barker, Jul 12 2014: (Start)
a(n) = a(n-1)+a(n-3)-a(n-4).
G.f.: x*(3*x^2+3*x+2) / ((x-1)^2*(x^2+x+1)). (End)

A047497 Numbers that are congruent to {1, 2, 4, 5, 7} mod 8.

Original entry on oeis.org

1, 2, 4, 5, 7, 9, 10, 12, 13, 15, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 41, 42, 44, 45, 47, 49, 50, 52, 53, 55, 57, 58, 60, 61, 63, 65, 66, 68, 69, 71, 73, 74, 76, 77, 79, 81, 82, 84, 85, 87, 89, 90, 92, 93, 95, 97, 98, 100, 101, 103
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A047399 (complement).

Programs

  • Magma
    I:=[1,2,4,5,7]; [n le 5 select I[n] else Self(n-5) + 8 : n in [1..70]]; // Vincenzo Librandi, Jun 06 2017
  • Maple
    seq(floor((8*n-3)/5),n=1..56); # Gary Detlefs, Mar 07 2010
  • Mathematica
    Select[Range[120],MemberQ[{1,2,4,5,7},Mod[#,8]]&] (* or *) LinearRecurrence[ {1,0,0,0,1,-1},{1,2,4,5,7,9},100] (* Harvey P. Dale, Jun 05 2017 *)
    Table[8 n + {1, 2, 4, 5, 7}, {n, 0, 20}]//Flatten (* Vincenzo Librandi, Jun 06 2017 *)
  • PARI
    for (n=1, 80, print1((8*n-3)\5, ", ")) \\ Michel Marcus, Sep 10 2014
    

Formula

a(n) = floor((8n-3)/5). [Gary Detlefs, Mar 07 2010]
From R. J. Mathar, Mar 23 2010: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6).
G.f.: x*(1 + x + 2*x^2 + x^3 + 2*x^4 + x^5)/ ((x^4 + x^3 + x^2 + x + 1) * (x-1)^2). (End)

A198084 Ceiling(n*sqrt(7)).

Original entry on oeis.org

0, 3, 6, 8, 11, 14, 16, 19, 22, 24, 27, 30, 32, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 61, 64, 67, 69, 72, 75, 77, 80, 83, 85, 88, 90, 93, 96, 98, 101, 104, 106, 109, 112, 114, 117, 120, 122, 125, 127, 130, 133, 135, 138, 141, 143, 146, 149
Offset: 0

Views

Author

Vincenzo Librandi, Oct 24 2011

Keywords

Crossrefs

Programs

  • Magma
    [Ceiling(n*Sqrt(7)): n in [0..60]];
  • Mathematica
    Ceiling[Sqrt[7]Range[0,60]] (* Harvey P. Dale, May 12 2016 *)
Showing 1-5 of 5 results.