cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047412 Numbers that are congruent to {0, 1, 2, 4, 6} mod 8.

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 9, 10, 12, 14, 16, 17, 18, 20, 22, 24, 25, 26, 28, 30, 32, 33, 34, 36, 38, 40, 41, 42, 44, 46, 48, 49, 50, 52, 54, 56, 57, 58, 60, 62, 64, 65, 66, 68, 70, 72, 73, 74, 76, 78, 80, 81, 82, 84, 86, 88, 89, 90, 92, 94, 96, 97, 98, 100, 102, 104, 105
Offset: 1

Views

Author

Keywords

Programs

  • GAP
    Filtered([0..105],n->n mod 8 = 0 or n mod 8 = 1 or n mod 8 = 2 or n mod 8 = 4 or n mod 8 = 6); # Muniru A Asiru, Oct 23 2018
  • Magma
    [n : n in [0..140] | n mod 8 in [0, 1, 2, 4, 6] ]; // Vincenzo Librandi, Mar 01 2016
    
  • Maple
    A047412:=n->8*floor(n/5)+[(0, 1, 2, 4, 6)][(n mod 5)+1]: seq(A047412(n), n=0..100); # Wesley Ivan Hurt, Aug 08 2016
  • Mathematica
    Flatten[Table[8*n + {0, 1, 2, 4, 6}, {n, 0, 11}]] (* Alonso del Arte, Sep 21 2011 *)
    Select[Range[0, 150], MemberQ[{0, 1, 2, 4, 6}, Mod[#, 8]] &] (* Vincenzo Librandi, Mar 01 2016 *)
    LinearRecurrence[{1,0,0,0,1,-1},{0,1,2,4,6,8},100] (* Harvey P. Dale, Aug 06 2018 *)
  • PARI
    a(n)=n\5*8 + [0, 1, 2, 4, 6][n%5+1] \\ Charles R Greathouse IV, Oct 27 2015
    

Formula

G.f.: x^2*(1+x+2*x^2+2*x^3+2*x^4) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Dec 05 2011
From Wesley Ivan Hurt, Aug 08 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6.
a(n) = a(n-5) + 8 for n > 5.
a(n) = (40*n - 55 - 2*(n mod 5) - 2*((n+1) mod 5) + 3*((n+2) mod 5) + 3*((n+3) mod 5) - 2*((n+4) mod 5))/25.
a(5*k) = 8*k-2, a(5*k-1) = 8*k-4, a(5*k-2) = 8*k-6, a(5*k-3) = 8*k-7, a(5*k-4) = 8*k-8. (End)
a(n) = (40*n-55+6*cos(2*Pi*(n-1)/5)+2*cos(2*Pi*n/5)+2*cos(4*Pi*n/5)-2*cos(2*Pi*(n+1)/5)-6*cos(Pi*(4*n+1)/5)+6*sin(Pi*(4*n+3)/10)+2*sin(Pi*(8*n+3)/10)-6*sin(Pi*(8*n+1)/10))/25. - Wesley Ivan Hurt, Oct 10 2018