A047412 Numbers that are congruent to {0, 1, 2, 4, 6} mod 8.
0, 1, 2, 4, 6, 8, 9, 10, 12, 14, 16, 17, 18, 20, 22, 24, 25, 26, 28, 30, 32, 33, 34, 36, 38, 40, 41, 42, 44, 46, 48, 49, 50, 52, 54, 56, 57, 58, 60, 62, 64, 65, 66, 68, 70, 72, 73, 74, 76, 78, 80, 81, 82, 84, 86, 88, 89, 90, 92, 94, 96, 97, 98, 100, 102, 104, 105
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
Programs
-
GAP
Filtered([0..105],n->n mod 8 = 0 or n mod 8 = 1 or n mod 8 = 2 or n mod 8 = 4 or n mod 8 = 6); # Muniru A Asiru, Oct 23 2018
-
Magma
[n : n in [0..140] | n mod 8 in [0, 1, 2, 4, 6] ]; // Vincenzo Librandi, Mar 01 2016
-
Maple
A047412:=n->8*floor(n/5)+[(0, 1, 2, 4, 6)][(n mod 5)+1]: seq(A047412(n), n=0..100); # Wesley Ivan Hurt, Aug 08 2016
-
Mathematica
Flatten[Table[8*n + {0, 1, 2, 4, 6}, {n, 0, 11}]] (* Alonso del Arte, Sep 21 2011 *) Select[Range[0, 150], MemberQ[{0, 1, 2, 4, 6}, Mod[#, 8]] &] (* Vincenzo Librandi, Mar 01 2016 *) LinearRecurrence[{1,0,0,0,1,-1},{0,1,2,4,6,8},100] (* Harvey P. Dale, Aug 06 2018 *)
-
PARI
a(n)=n\5*8 + [0, 1, 2, 4, 6][n%5+1] \\ Charles R Greathouse IV, Oct 27 2015
Formula
G.f.: x^2*(1+x+2*x^2+2*x^3+2*x^4) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Dec 05 2011
From Wesley Ivan Hurt, Aug 08 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6.
a(n) = a(n-5) + 8 for n > 5.
a(n) = (40*n - 55 - 2*(n mod 5) - 2*((n+1) mod 5) + 3*((n+2) mod 5) + 3*((n+3) mod 5) - 2*((n+4) mod 5))/25.
a(5*k) = 8*k-2, a(5*k-1) = 8*k-4, a(5*k-2) = 8*k-6, a(5*k-3) = 8*k-7, a(5*k-4) = 8*k-8. (End)
a(n) = (40*n-55+6*cos(2*Pi*(n-1)/5)+2*cos(2*Pi*n/5)+2*cos(4*Pi*n/5)-2*cos(2*Pi*(n+1)/5)-6*cos(Pi*(4*n+1)/5)+6*sin(Pi*(4*n+3)/10)+2*sin(Pi*(8*n+3)/10)-6*sin(Pi*(8*n+1)/10))/25. - Wesley Ivan Hurt, Oct 10 2018