cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047415 Numbers that are congruent to {1, 3, 4, 6} mod 8.

Original entry on oeis.org

1, 3, 4, 6, 9, 11, 12, 14, 17, 19, 20, 22, 25, 27, 28, 30, 33, 35, 36, 38, 41, 43, 44, 46, 49, 51, 52, 54, 57, 59, 60, 62, 65, 67, 68, 70, 73, 75, 76, 78, 81, 83, 84, 86, 89, 91, 92, 94, 97, 99, 100, 102, 105, 107, 108, 110, 113, 115, 116, 118, 121, 123, 124
Offset: 1

Views

Author

Keywords

Comments

Consider an operation SS(n) defined for a specific sequence b where b(n) is the n-th term of b. This operation is defined as follows: SS(1) = b(1); if b(n+1) > SS(n), SS(n+1) = SS(n) + b(n+1), otherwise SS(n+1) = SS(n) - b(n+1) (If b(n) = A000027(n), then SS(n) = A008344(n+1)). If the sequence b can represent any permutation of the first n natural numbers, then a(n) is the maximum possible value of SS(n). - Iain Fox, Sep 15 2020 (see link by Math StackExchage)

Crossrefs

Programs

Formula

G.f.: x*(1+x+2*x^3) / ( (1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
a(n) = 2*(n-1)-(i^(n*(n+1))-1)/2, where i=sqrt(-1). - Bruno Berselli, Dec 06 2011
From Wesley Ivan Hurt, May 31 2016: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>4.
a(n) = (1+i)*(4*n-4*n*i+3*i-3+i^(1-n)-i^n)/4 where i=sqrt(-1).
a(2*k) = A047398(k), a(2*k-1) = A047461(k). (End)
E.g.f.: (4 + sin(x) - cos(x) + (4*x - 3)*exp(x))/2. - Ilya Gutkovskiy, May 31 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*Pi/16 - (sqrt(2)+1)*log(2)/8 + sqrt(2)*log(sqrt(2)+2)/4. - Amiram Eldar, Dec 24 2021